首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文给出了对于微分方程y~((n))+p_1y~((n-1))+…+p_ny=Ae~(ax)(其中p_1,p_2,…p 是常数)在求特解 y~*=ax~ke~(ax)时,应用微分法来确定常数a的一种方法.  相似文献   

2.
目前国内出版的常微分方程教科书中,对n阶线性方程y~(n)+a_1(x)y~(n-1)+…+a_(n-1)(x)y'+a_n(x)y=f(x) (1)的解的性质,如线性齐次和非齐次方程解的迭加原理,复值解等,都是分散在各节中讨论.其实,这些解的性质之间存在着一定的内在联系.我们可以集中统一处理这部分教学内容.笔者在教学过程中,曾经作过尝试,现在根据实践情况,并参考(1),将它整理出来,供大家参考.  相似文献   

3.
本文拟给出一阶微分方程的几个可积类型。这些方程只要通过适当的变 量变换,就可以化归为变量可分离方程,从而可积。可以着出,通常意义下的 一阶齐次微分方程、线性微分方程,和伯努里(Bernoulli)微分方程,是本文 所给几个可积微分方程的特例。 本文还定义了广义黎卡提方程(Gene rdized Riccati′s eguation): dy/dx+q(X)y=a_0(y)y~n+a_1(X)y~(n-1)+…+a_(n-1)(X)y+a_n(X),(a_0(X)≠0,n≥2):并提出了一个猜想:广义黎卡提方程一般是不能用初等积分法求解的;同时,作者给出了有关广义黎卡提方程的两个结论: (i)在条件a_n(x)≠0,a_(n-1)(X)=c_(n-1) a_(x) (i= l,2,…,n; C_(n-1)为常数)之下,广义黎卡提方程是可积的。 (ii)如果a_(n-1)(X)=0(0≤j(x)=c_(n-i)a_(n-i-1)(x)(i>j+1),则广义黎卡提方程也是可积的。  相似文献   

4.
在求常系数非齐次线性微分方程组特解时,目前书中采用的方法有常数变量法,算子消去法、待定系数法和拉氏变换法,这些方法的计算是复杂的,本文提出算子公式法,计算较简单。 设常系数非齐次线性微分方程组为 dX/dt=AX+f(t) (1) 其中 A=(a_(ij)),a_(ij)(i,j=1,2…,n)均为常数,X与f(t)是n维列向量:X(t)=(x_1(t),x_2(t),…,x_n(t))~T,f(t)=(f_1(t),f_2(t),…,f_n(t))~T。  相似文献   

5.
<正> §1前言考虑常系数线性齐次微分方程组(dx)/(dt)=Ax(1·1)其中A=(a_(ij))是n×n的常数矩阵,x是n维列向量,x=(x_1,x_2,…,x_n)T.方程组(1·1)的求解方法是常微分方程这一课程的基本内容之一。现行的教科书中在处理这个问题时要用到较多的线性代数知识。例如一般都采取将A化为Jordan标准型,  相似文献   

6.
考虑周期系数高阶线性微分方程f~((n))+∑j=1 n[P_(n-j)(e~z)+Q_(n-j)(e~(-z))]f~((n-j))=R_1(e~z)+R_2(e~(-z)),其中n≥2,P_j(z),Q_j(z)(j=0,1,2,…,n-1),R_1(z)和R_2(z)均是关于z的多项式,且Pj(z),Qj(z)(j=0,1,2,…,n-1)不全为常数.在条件degPjdegP0(j=1,2,…,n-1)下,获得方程的次正规解的表示.  相似文献   

7.
一个含有随机系数a_k(x)的n阶线性微分方程的形式为 L_au=a_n(x)d~uu(x)/dx~n+a_(n-1)(x)d~(n-1)u(x)/dx~(n-1)+…+a_o(x)u(x)=P(x) 其中p(x)是随机函数。本文对以下三种情况: 1 含微变化的随机系数的方程; 2 含缓慢变化的随机系数的方程; 3 只含一个随机系数的方程。用摄动法讨论上述方程的解的某些统计性质,求出解的某些特征值,或求出解的概率密度。  相似文献   

8.
高阶常系数非齐次线性微分方程y(n)+an-1y(n-1)+…+a1y(1)+a0y=f(x),(a0,a1,…,a n+1∈R),文章将讨论一种将此高阶方程化为a个一阶非齐次线性微分方程组的解法来简化解题过程,并介绍了一种求一类高阶常系数线性微分方程特解的比较简单的方法.  相似文献   

9.
在求解形如y″+py′+qg=f(x).的二阶常系数非齐次线性微分方程的特解时,对于f(x)=P_m(x)e~(λx)(cosωx+sinωx)型及f(x)=P_m(x)e~(λx)。型一般设方程对两种不同类型的f(x)的特解y~*分别为y~*=x~kQ_m(x)e~(λx)(cosωx+sinωx)(1)y~*=x~kQ_m(x)e~(λx)(2)对两种不同类型的f(x),设两种不同形式的特解时,当P_m(x)为高次多项式时,(1)式较(2)式结构复杂,用待定系数法确定Q_m(x)时的计算繁度大。  相似文献   

10.
赵临龙 《河南科学》2019,37(1):15-20
对于常系数线性微分方程组:dx/dt=Ax+f (t)(A是n阶实常数矩阵),引入特征根方程A-||λE=0的特征行向量K=(k_1,k_2,?,k_n)(其中K满足:K(A-λE)=0)概念,将n元一阶常系数线性微分方程组化为一阶线性微分方程形式.  相似文献   

11.
本文主要解决了两类特殊行列式的计算问题,得出了两个有趣的对称的计算公式,即n阶循环行列式的计算公式D_n=multiply form i=1 to n(K=1)(a_1 a_2ω_k … a_nω_k~(n-1))和n阶顺序递增行列式的计算公式E_n=(-1)~[(n-1)/2]multiply from i=1 to n(k=1)(a_1 a_2ω_k … a_nω_k~(n-1))  相似文献   

12.
讨论连续LTI系统数学模型即微分方程的几种解法,对于可以用常系数线性微分方程c_0_(dtn)/~(dn)r(t) c_1 _(dtn-1)/~(dn-1)r(t) … c_nr(t)=E_0_(dtm)/~(dm)e(t) E_1_(dtm-1)/~(dm-1)e(t) … E_me(t)描述的线性时不变系统在确定性激励和起始条件(即r~((n-1))(0_-)、r~((n-2))(0-)、r’(0-)、r(0_-))下确定完全响应的几种方法,包括时间域法和变换域法,也包括导出初始值(即r~((n-1))(0_ )、r~((n-2))(0_ )、r’(0 )、r(0_ ))的方法和不必导出初始值的方法。  相似文献   

13.
有限域上由两个广义对角多项式所确定的簇中的有理点   总被引:1,自引:1,他引:0  
设Fq为有限域,f_l=a_(l1)x(~d~(l)_(11))_(11)…x~(d~((l))_(1_(k1)))_(1_(k1))+a_(l2)x~(d~((l))_(21))_(21)…x~(d~((l))_(2k_2)_(2k_2))+…+a_(ln)x~(d~((l))_(n1))_(n1)…x~(d~((l))_(nk_n)_(nk_n)+c_l(l=1,2)为F_q上的一组广义对角多项式,用N_q(V)表示由f_l(l=1,2)确定的族中的F_q有理点的个数.作者利用Adolphson和Sperber的牛顿多面体理论与指数和工具,证明了ord_qN_q(V)≥max{「∑~n_(i=1)1/d_i」-2,0,其中d_i=max{d~(1)_(ij),d~(2)_(ij)|1≤j≤k_i},1≤i≤n.  相似文献   

14.
通过分析,研究可以证明得到n阶常系数非齐次线性微分方程y(n)+p1y(n-1)+p2y(n-2)+…+pny=Pm(x)eλx的特解公式,特解公式与特征方程紧密相连,能达到简化其特解的求解过程.  相似文献   

15.
本文指出了使用实系数标准多项式的Hurwitz 阵的所有对角主子式非负来作为这个多项式所有零点在闭左半复平面的判据是错误的.同时给出了一个定理:具有n×n 常数矩阵A 的线性微分方程组是稳定的,只要△(?)>0,(i=1,2,…,n-2)△_(n-1)=△_n=0其中△(?)(i=1,2,…,n)是矩阵A 的特征多项式的Hurwitz 阵的对角主子式.  相似文献   

16.
研究线性微分方程b_ny~((n))(t)+b_(n-1)y~((n-1))(t)+…+b_1y′(t)+b_0y(t)=f(t)的Hyers-Ulam稳定性.首先构造一个函数g(t),利用g(t)对条件进行形式降阶;然后再构造一个函数z(t),从而实现条件的真正降阶;最后利用数学归纳法予以证明.  相似文献   

17.
用Leray-Schauder不动点定理,讨论完全n阶边值问题:{-u~((n))(t)=f(t,u(t),u′(t),…,u~((n-1))(t)), t∈[0,1],u~((i))(0)=0, i=0,1,2,…,n-2,u~((n-1))(1)=0烅烄烆解的存在性,其中f:[0,1]×R~n→R为连续函数.在一个允许f(t,x_0,x_1,…,x_(n-1))关于x_i(i=0,1,2,…,n-1)超线性增长的不等式条件及f(t,x_0,x_1,…,x_(n-1))关于x_(n-1)满足Nagumo型增长的条件下,得到了该问题解的存在性.  相似文献   

18.
§1.引言设 f_k(z)=z+sum from n=1 to ∞ a_(nk+1)~((k))z~(nk+1)为在单位圆|z|<1内正则且单叶的函数,用 S_k 表示该函数族,特别记 S_1=S.对于 f_1(z)∈S;f_2(z)∈S_2的相邻系数模的差,戈鲁金曾有如下之估计:[1](1) ||a_n+1|-|a_n||≤C_(1)n~(1/4)log n,(2) ||a_(2n+1)~((2))|-|a_(2n-1)~((2))||≤C_2n~(-1/4)log n.其中的 C_1,C_2以及以后的 C_3,C_4,……都是绝对常数。对于映射单位圆|z|<1为关于原点为星形领域的函数 f(z)戈鲁金亦有估计:[1],[2]  相似文献   

19.
§1.小引.线性微分方程系解的渐近性态跟它的系数关系如何,迄今为止,还是不知道的。这问题不仅是微分方程式论中的一个难题,同时也是一个重要的问题,甚至这问题对周期线性微分方程系,也没有得到解决.对于周期线性微分方程系其中A(t)为定义在实轴上的周期和连续的n阶方阵,它的周期为 ,那末存在属于c(1)的n阶正则方阵p(t)=p(T t),当(1.1)施行变换y=p(t)x,可使(1.1)的变换后式子写为其中B为常数方阵,这就是平常所说的Floquet理论.对于常系数的线性微分方程系的显易解的稳定性跟它的系数关系如何,为众所周知的事,现在尽管在理论上可以把(1.1)…  相似文献   

20.
通过待定常数法,将一类二阶变系数线性常微分方程约化为一元二次代数方程.这类方程具有形如y=z(x)eλp(x)的解,这类解可以看作是二阶常系数线性常微分方程和欧拉方程解的推广.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号