首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
燃料电池混合动力系统优化控制策略   总被引:3,自引:0,他引:3  
针对车用燃料电池蓄电池混合动力系统的特点设计了优化的能量管理策略。采用动态规划算法对目标驾驶循环进行全局优化,对最优能量分配策略进行分析,提取相应的控制规则,并设计了基于模糊控制的燃料电池混合动力系统实时控制策略。仿真及台架试验结果表明该控制策略能够控制燃料电池工作在高效区,提高整车的燃料经济性。  相似文献   

2.
以动力电池—超级电容复合电源结构的纯电动汽车为研究对象,基于模糊控制理论设计能量管理策略进行功率分配.以某电动汽车为原型,应用Cruise软件搭建复合电源电动汽车整车模型,在Simulink中开发能量管理系统,基于NEDC循环工况进行联合仿真.仿真结果表明,模糊控制分配策略能够很好发挥超级电容"削峰填谷"的作用,优化了双能量源电源系统的工作效率,满足车辆动力性能的同时,明显提升动力电池的荷电状态.基于模糊控制的能量管理策略,对电池寿命提高和车辆行驶里程提升均取得良好控制效果.  相似文献   

3.
针对车用燃料电池蓄电池混合动力系统的特点设计了优化的能量管理策略。采用动态规划算法对目标驾驶循环进行全局优化,对最优能量分配策略进行分析,提取相应的控制规则,并设计了基于模糊控制的燃料电池混合动力系统实时控制策略。仿真及台架试验结果表明该控制策略能够控制燃料电池工作在高效区,提高整车的燃料经济性。  相似文献   

4.
为了解决燃料电池汽车功率分配中的实时性与准确性问题,提出使用离线非线性规划+在线XGBoost算法对燃料电池汽车功率进行预测.首先搭建燃料电池混合动力汽车的动力系统模型,并且通过聚类分析获取车辆行驶的典型混合工况;其次使用非线性规划算法离线计算在该工况下燃料电池与锂电池的最优分配比例;最后XGBoost算法以非线性规划计算结果为训练数据进行模型训练验证.结果表明:所提出的算法强化了目前离线计算中对于燃料电池混合动力系统动态性能多目标优化的考虑,增强了在线机器学习训练数据的准确性,同时所提出的XGBoost算法可以加快计算速度以及避免数据的过拟合,实现对燃料电池混合动力汽车功率的精确估计.  相似文献   

5.
针对目前较为成熟的氢燃料电池汽车动力系统构型和能量管理中存在的不足,提出一种基于锂离子超级电容器和氢燃料电池的模糊控制策略的燃料电池汽车能量管理方法。改进的能量管理方法在传统蓄电池作为辅助电源基础上,运用了锂离子超级电容器,其拥有更大的功率密度和出色的能量密度,可以更好地满足汽车动力性需求。同时将传统功率跟随控制策略进行修改,采用模糊控制策略对新动力系统进行控制,在满足整车动力性的同时有效地提高了燃料经济性,且SOC和燃料电池负载变化情况都有明显改善。  相似文献   

6.
为提升整车经济性和耐久性,提出了一种基于强化学习和路况信息的燃料电池汽车能量管理策略。首先,根据关键部件参数搭建了动力系统模型,并根据城市道路工况特征在VISSIM软件中搭建交通模型并提取了车辆行驶数据及路况数据。其次,将路况数据作为输入,利用长短期记忆神经网络对车速进行预测。最后,基于强化学习算法,将预测车速、加速度以及动力电池荷电状态作为输入,燃料电池系统功率作为输出进行能量管理策略的设计。仿真结果表明,所提策略的百公里氢耗量与动态规划策略相比仅相差1.27%,且燃料电池系统的平均功率波动降低了5.01%,因此可有效提升整车的经济性和耐久性。  相似文献   

7.
功率分流式混合动力汽车复合电源系统设计   总被引:1,自引:0,他引:1  
为解决功率分流式混合动力汽车单一蓄电池功率密度小、循环寿命短等问题,引入超级电容-蓄电池复合电源系统,利用AVL-Cruise/Simulink联合仿真平台搭建了功率分流式混合动力汽车的动力系统模型,在基于发动机最优工作曲线的能量管理控制策略中加入了复合电源功率分配策略,该功率分配策略能够缓冲起停发动机、制动工况下的电机工作时的大电流对电池的冲击,使电池尽可能工作在高效率区间来提高车辆的燃油经济性.在此基础上,对蓄电池组和超级电容进行了参数匹配,仿真结果表明蓄电池的放电过程得到了优化,所设计的复合电源系统能够提高车辆的燃油经济性.   相似文献   

8.
为了解决储能蓄电池作为动力源应用电动汽车的单一化等不足,在对锂电池与超级电容的外部工作特性及其储能机理理论研究基础上,提出锂电池-超级电容混合电动汽车能量系统。首先基于超级电容内部化学反应与外部工作特性,提出等效电路模型,并建立了其时域状态空间模型。接下来制定脉冲电流实验方案采集电压实验数据,辨识得到准确的超级电容模型,并通过模型仿真曲线与实验曲线的对比来验证模型的准确性。然后结合电动起实际工况及电池和超级电容储能机理,提出超级电容-电池电动汽车能量管理策略,最后基于超级电容模型和电池模型,在matlab/simulink仿真实验平台搭建起超级电容-电池混合电动汽车能量仿真模型,仿真结果验证管理策略的可行性和准确性。  相似文献   

9.
目的改善燃料电池混合动力汽车的燃料经济性,优化混合动力系统能量管理控制.方法采用燃料电池和镍氢蓄电池构成新能源混合动力系统,以最少等效燃料消耗为目标函数,建立了混合动力系统能量分配管理的数学模型,引入惩罚因子对蓄电池的SOC进行调控,HWFET驾驶循环工况优化了混合动力系统实时能量分配结果当SOC介于0.5和0.8之间时,混合动力系统进入瞬时优化能量管理策略;当SOC0.5时,混合动力系统由燃料电池供能并给蓄电池充电;当SOC0.8时,混合动力系统主要由蓄电池供能,动力不足情况下由燃料电池能量补充;在惩罚因子的作用下,SOC将处于一个合理区域,最终使混合动力系统处于最优能量分配管理状态.结论实时功率优化控制策略避免燃料电池处于低功率低效率输出,在燃料电池和蓄电池之间合理分配功率,提高了燃料经济性,同时惩罚因子的引入保证了SOC稳定性.  相似文献   

10.
以动力电池和超级电容组成的复合电源系统为研究对象,在合理匹配复合电源系统各参数的基础上,建立基于逻辑门限和模糊控制的复合电源系统功率分配策略。利用汽车仿真软件ADVISOR2002并对其二次开发,搭建采用复合电源系统的纯电动汽车模型,结合典型的NEDC道路循环工况分别对此两种功率分配控制策略进行仿真对比分析。结果表明,基于模糊控制策略的复合电源系统可以更好地分配动力电池和超级电容之间的功率,复合电源系统性能明显提升。  相似文献   

11.
从复合电源系统数学模型出发,选取电机需求功率、电量消耗模式与电量维持模式切换时动力电池的荷电状态、超级电容补电上限及动力电池恒放电功率这4个因子,提出了基于4因子法的复合电源系统功率分配策略。在分析超级电容能量利用率、插电式混合动力汽车运行环境及用电机制的基础上,采用控制变量法分别建立了基于离合器结合转速和混合驱动时超级电容充电状态的2种不同分配策略。试验表明,与基于电机平均功率分配策略相比,全程处于电量消耗模式下的策略其燃油经济性最好且提升了3.15%,从而验证了该策略的有效性。基于模拟退火算法的优化结果,得出了各因子对综合油耗的影响机理,以期为建立复合电源系统功率分配策略提供理论基础。  相似文献   

12.
通过分析影响燃料电池电动汽车燃料电池使用寿命的机理,提出一种具有实用性的基于小波规则的能量管理策略;根据负载瞬态功率需求,构建Haar小波双通道滤波器组,实现整车需求功率的小波一级功率分流,初步满足燃料电池的基频功率需求;结合基于规则的控制策略实现二级功率分流,以平衡峰值功率和负载高频波动功率;结合MATLAB-Simulink联合仿真平台进行仿真验证。结果表明,与单一的基于规则的控制策略相比,基于小波规则二级功率分流的控制策略能够更好地抑制燃料电池的瞬态峰值功率,确保燃料电池工作在高效区间,更有效地延长燃料电池使用寿命,并且经济性较好。  相似文献   

13.
新型功率分流混合动力系统能量管理预测优化   总被引:1,自引:0,他引:1  
针对新型双模功率分流混合动力系统,为改善拟搭载样车的能量经济性,开发了基于模型预测控制的实时优化能量管理策略并进行了仿真验证。通过分析各动力源在不同工作模式下的转速转矩关系,建立了功率分流系统模型。通过分析该构型方案在不同功率分流模式下的机械点,得到系统效率随传动比的变化关系,并基于发动机稳态燃油消耗特性曲线建立了其数学模型,基于安时积分法建立了动力电池一阶等效模型。根据已有的发动机模型及动力电池模型,建立了功率分流混合动力系统短时域预测模型,预测了有限时域内电池荷电状态及发动机燃油消耗率的变化。最后,基于预测时域内等效燃油消耗最小提出系统在混合动力模式下发动机工作点的最优决策律,并基于该最优决策律开发功率分流混合动力系统模型预测能量管理策略,实现了各动力源转矩的实时最优分配。设置预测时域和控制时域均为3s,新欧洲行驶工况仿真结果表明,该控制策略可实现能量管理的实时滚动优化,其百公里油耗为4.95L,相比于基于规则能量管理策略下的百公里油耗5.364L,可提升整车大约7.7%的燃油经济性。  相似文献   

14.
针对升压型电池-超级电容复合电源的输出端超级电容电压不稳定、输入端电池电流波动大等问题,提出了一种自适应滑模控制策略。结合升压变换器的平均状态模型和超级电容特性建立了升压型电池-超级电容复合电源的动态模型。在此基础上,设计自适应观测函数并根据李亚普诺夫函数确定自适应规则。选取合适的滑模面,基于滑模面和自适应规则设计占空比函数。考虑复合电源的工作需求,分别针对恒流和恒压控制设计比例因子。搭建实验台进行测试,实验结果表明:与PI控制策略相比,升压型电池-超级电容复合电源采用自适应滑模控制,能使系统快速达到稳定状态,在恒压控制和恒流控制条件下,系统的调节速度分别提高了88.8%与62.5%;在超级电容电压较低时,采用自适应滑模控制能有效抑制输出电压和电感电流波动,提升系统的安全性和可靠性。  相似文献   

15.
针对新型双模功率分流混合动力系统,为改善拟搭载样车的能量经济性,开发了基于模型预测控制的实时优化能量管理策略并进行了仿真验证。通过分析各动力源在不同工作模式下的转速转矩关系,建立了功率分流系统模型,通过分析该构型方案在不同功率分流模式下的机械点,得到系统效率随传动比的变化关系,并基于发动机稳态燃油消耗特性曲线建立了其数学模型,基于安时积分法建立了动力电池一阶等效模型。根据已有的发动机模型及动力电池模型,建立了功率分流混合动力系统短时域预测模型,预测了有限时域内电池荷电状态及发动机燃油消耗率的变化。最后,基于预测时域内等效燃油消耗最小提出系统在混合动力模式下发动机工作点的最优决策律,并基于该最优决策律开发功率分流混合动力系统模型预测能量管理策略,实现了各动力源转矩的实时最优分配。设置预测时域和控制时域均为3s,新欧洲行驶工况仿真结果表明,该控制策略可实现能量管理的实时滚动优化,其百公里油耗为4.95L,相比于基于规则能量管理策略下的百公里油耗5.364L,可提升整车大约7.7%的燃油经济性。  相似文献   

16.
针对新型双模功率分流混合动力系统,为改善拟搭载样车的能量经济性,开发了基于模型预测控制的实时优化能量管理策略并进行了仿真验证。通过分析各动力源在不同工作模式下的转速转矩关系,建立了功率分流系统模型,通过分析该构型方案在不同功率分流模式下的机械点,得到系统效率随传动比的变化关系,并基于发动机稳态燃油消耗特性曲线建立了其数学模型,基于安时积分法建立了动力电池一阶等效模型。根据已有的发动机模型及动力电池模型,建立了功率分流混合动力系统短时域预测模型,预测了有限时域内电池荷电状态及发动机燃油消耗率的变化。最后,基于预测时域内等效燃油消耗最小提出系统在混合动力模式下发动机工作点的最优决策律,并基于该最优决策律开发功率分流混合动力系统模型预测能量管理策略,实现了各动力源转矩的实时最优分配。设置预测时域和控制时域均为3s,新欧洲行驶工况仿真结果表明,该控制策略可实现能量管理的实时滚动优化,其百公里油耗为4.95L,相比于基于规则能量管理策略下的百公里油耗5.364L,可提升整车大约7.7%的燃油经济性。  相似文献   

17.
虞铭  翁正新 《科技信息》2011,(10):I0106-I0106,I0107
燃料电池汽车因其低油耗、低排放、商品化相对容易,是将来二十年内新能源汽车开发的主要形式之一。燃料电池汽车的动力系统普遍采用蓄电池组与燃料电池系统并联驱动的电-电混合动力,合理地选择动力系统的各个部件对燃料电池汽车起着至关重要的作用。文中对燃料电池动力系统的三个主要部件电机、动力蓄电池以及燃料电池发动机的选型和参数选择进行了分析,提出了燃料电池汽车动力系统的选型原则,为燃料电池汽车动力系统的优化设计提供理论参考。  相似文献   

18.
为了同时满足小功率燃料电池氢电混合动力场地车的动力性和经济性要求.研究了燃料电池和蓄电池的功率匹配最优化问题.对氢氧质子交换膜燃料电池~铅酸蓄电池混合动力场地车动力系统的主要组成部件进行选型.采用先进车辆模拟器(advanced vehicle simulator,ADVISOR)。在FTP和ECE_EUDC工况下对若干组燃料电池一铅酸蓄电池的匹配方案进行仿真分析.以满足车辆动力性为基本前提.对比分析每种匹配方案的燃料经济性.得到燃料电池氢电混合动力场地车燃料电池和蓄电池的最佳功率匹配方案:燃料电池功率为23kW.蓄电池功率为13kW.  相似文献   

19.
针对纯电动拖拉机续驶里程不足等问题,分析了燃料电池和蓄电池的输出特性,设计了燃料电池/蓄电池混合动力电动拖拉机动力系统的结构和功率流。考虑到保持燃料电池系统的最优性能和保证蓄电池组的合理充放电等原则,制定了一种基于模糊控制的能量管理策略。仿真结果表明:在田间作业工况下,与开关控制策略相比,本文设计的能量管理策略的等效氢气消耗量降低12. 84%,等效氢气消耗量方差降低20. 24%。在运输作业工况下,与开关控制策略相比,本文设计的能量管理策略的等效氢气消耗量降低11. 11%。  相似文献   

20.
在城市路况下,电池和超级电容复合电源电动汽车会对信号灯判断不准确而频繁起停,造成额外的能量消耗。基于智能交通系统中预知交通信号信息的应用场景,本文提出了一种分层能量管理方法。首先,根据交通信号信息,上层车速设计策略优化车速,得到车辆经济参考车速,避免车辆在信号灯区域频繁起停。其次,基于经济参考车速,设计了一种基于非线性模型预测控制的下层能量管理策略,合理分配电池及超级电容的功率输出,并有效跟踪经济参考车速,降低电池功率的变化率。最后,对所提出的车速设计和能量管理策略进行仿真分析,并搭建实验平台进行验证。研究结果表明:分层能量管理策略使等效燃油经济性提高了3.24%,降低了电池能耗,并且减少了车辆急加速或急减速情况,提高了驾驶舒适性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号