首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
2.
Embryonic stem (ES) cells, the totipotent outgrowths of blastocysts, can be cultured and manipulated in vitro and then returned to the embryonic environment where they develop normally and can contribute to all cell lineages. Maintenance of the stem-cell phenotype in vitro requires the presence of a feeder layer of fibroblasts or of a soluble factor, differentiation inhibitory activity (DIA) produced by a number of sources; in the absence of DIA the ES cells differentiate into a wide variety of cell types. We recently noted several similarities between partially purified DIA and a haemopoietic regulator, myeloid leukaemia inhibitory factor (LIF), a molecule which induces differentiation in M1 myeloid leukaemic cells and which we have recently purified, cloned and characterized. We demonstrate here that purified, recombinant LIF can substitute for DIA in the maintenance of totipotent ES cell lines that retain the potential to form chimaeric mice.  相似文献   

3.
兔ES样细胞系的建立及其特性分析   总被引:5,自引:0,他引:5  
报道从237枚家兔胚胎中建成7个可连续传代的ES样细胞系。建系条件为,使用小鼠原始胚胎成纤维细胞(ME)作饲养层,以含10%胎年血清和10%兔血清的DMEM/F12为培养基,添加白血病抑制因子(LIF)或上皮生长因子(EGF),胚龄为90,96h。该细胞系的细胞。在许多方面类似于小鼠ES细胞,具干细胞的形态特征,呈集落型生长,可连续传代并保持其形态特征,具有一定的自发分化和诱导分化的能力,悬浮培养  相似文献   

4.
5.
In order to get hematopoietic cells from embryonic stem (ES) cells and to study development mechanisms of hematopoietic cells, the method of inducing embryonic stem cells to hematopoietic cells was explored by differenciating mouse ES cells and human embryonic cells in three stages. The differentiated cells were identified by flow cytometry, immunohistochemistry and Wright's staining. The results showed that embryoid bodies (EBs) could form when ES cells were cultured in the medium with 2-mercaptoethanol (2-ME). However, cytokines, such as stem cell factor (SCF), thrombopoietin (TPO), interleukin-3 (IL-3), interleukin-6 (IL-6), erythropoietin (EPO) and granular colony stimulating factor (G-CSF), were not helpful for forming EBs. SCF, TPO and embryonic cell conditional medium were useful for the differentiation of mouse EBs to hematopoietic progenitors. Eighty-six percent of these cells were CD34+ after 6-d culture. Hematopoietic progenitors differentiated to B lymphocytes when they were cocultured with primary bone marrow stroma cells in the DMEM medium with SCF and IL-6. 14 d later, most of the cells were CD34-CD38+. Wright's staining and immunohistochemistry showed that 80% of these cells were plasma-like morphologically and immunoglubolin positive. The study of hematopoietic cells from human embryonic cells showed that human embryonic cell differentiation was very similar to that of mouse ES cells. They could form EBs in the first stage and the CD34 positive cells account for about 48.5% in the second stage.  相似文献   

6.
In order to get hematopoietic cells from embryonic stem (ES) cells and to study development mechanisms of hematopoietic cells, the method of inducing embryonic stem cells to hematopoietic cells was explored by differenciating mouse ES cells and human embryonic cells in three stages. The differentiated cells were identified by flow cytometry, immunohistochemistry and Wright’s staining. The results showed that embryoid bodies (EBs) could form when ES cells were cultured in the medium with 2-mercaptoethanol (2-ME). However, cytokines, such as stem cell factor (SCF), thrombopoietin (TPO), interleukin-3 (IL-3), interleukin-6 (IL-6), erythropoietin (EPO) and granular colony stimulating factor (G-CSF), were not helpful for forming EBs. SCF, TPO and embryonic cell conditional medium were useful for the differentiation of mouse EBs to hematopoietic progenitors. Eighty-six percent of these cells were CD34+ after 6-d culture. Hematopoietic progenitors differentiated to B lymphocytes when they were cocultured with primary bone marrow stroma cells in the DMEM medium with SCF and IL-6. 14 d later, most of the cells were CD34CD38+. Wright’s staining and immunohistochemistry showed that 80% of these cells were plasma-like morphologically and immunoglubolin positive. The study of hematopoietic cells from human embryonic cells showed that human embryonic cell differentiation was very similar to that of mouse ES cells. They could form EBs in the first stage and the CD34 positive cells account for about 48.5% in the second stage.  相似文献   

7.
Murine embryonic stem (ES) cells are pluripotent cell lines established directly from the early embryo which can contribute differentiated progeny to all adult tissues, including the germ-cell lineage, after re-incorporation into the normal embryo. They provide both a cellular vector for the generation of transgenic animals and a useful system for the identification of polypeptide factors controlling differentiation processes in early development. In particular, medium conditioned by Buffalo rat liver cells contains a polypeptide factor, ES cell differentiation inhibitory activity (DIA), which specifically suppresses the spontaneous differentiation of ES cells in vitro, thereby permitting their growth as homogeneous stem cell populations in the absence of heterologous feeder cells. ES cell pluripotentiality, including the ability to give rise to functional gametes, is preserved after prolonged culture in Buffalo rat liver media as a source of DIA. Here, we report that purified DIA is related in structure and function to the recently identified hematopoietic regulatory factors human interleukin for DA cells and leukaemia inhibitory factor. DIA and human interleukin DA/leukaemia inhibitory factor have thus been identified as related multifunctional regulatory factors with distinct biological activities in both early embryonic and hematopoietic stem cell systems.  相似文献   

8.
9.
The nucleus of a somatic cell could be dedifferentiated and reprogrammed in an enucleated heterogeneous oocyte. Some reconstructed oocytes could develop into blastocysts in vitro, and a few could develop into term normally after transferred into foster mothers, but most of cloning embryos fail to develop to term. In order to evaluate the efficacy of embryonic stem cell as nucleus donor in interspecific animal cloning, we reconstructed enucleated rabbit oocytes with nuclei from mouse ES cells, and analyzed the developmental ability of reconstructed embryos in vitro. Two kinds of fibroblast cells were used as donor control, one derived from ear skin of an adult Kunming albino mouse, and the other derived from a mouse fetus. Three types of cells were transferred into perivitelline space under zona pellucida of rabbit oocytes respectively. The reconstructed oocytes were fused and activated by electric pulses, and cultured in vitro. The developmental rate of reconstructed oocytes derived from embryonic stem cells was 16.1%, which was significantly higher than that of both the adult mouse fibroblast cells (0%-3.1%, P < 0.05) and fetus mouse fibroblast cells (2.1%-3.7%, P < 0.05). Chromosome analysis confirmed that blastocyst cells were derived from ES donor cell. These observations show that reprogramming is easier in interspecific embryos reconstructed with ES cells than that reconstructed with somatic cells, and that ES cells have the higher ability to direct the reconstructed embryos development normally than fibroblast cells.  相似文献   

10.
Silva J  Chambers I  Pollard S  Smith A 《Nature》2006,441(7096):997-1001
Through cell fusion, embryonic stem (ES) cells can erase the developmental programming of differentiated cell nuclei and impose pluripotency. Molecules that mediate this conversion should be identifiable in ES cells. One candidate is the variant homeodomain protein Nanog, which has the capacity to entrain undifferentiated ES cell propagation. Here we report that in fusions between ES cells and neural stem (NS) cells, increased levels of Nanog stimulate pluripotent gene activation from the somatic cell genome and enable an up to 200-fold increase in the recovery of hybrid colonies, all of which show ES cell characteristics. Nanog also improves hybrid yield when thymocytes or fibroblasts are fused to ES cells; however, fewer colonies are obtained than from ES x NS cell fusions, consistent with a hierarchical susceptibility to reprogramming among somatic cell types. Notably, for NS x ES cell fusions elevated Nanog enables primary hybrids to develop into ES cell colonies with identical frequency to homotypic ES x ES fusion products. This means that in hybrids, increased Nanog is sufficient for the NS cell epigenome to be reset completely to a state of pluripotency. We conclude that Nanog can orchestrate ES cell machinery to instate pluripotency with an efficiency of up to 100% depending on the differentiation status of the somatic cell.  相似文献   

11.
Chung Y  Klimanskaya I  Becker S  Marh J  Lu SJ  Johnson J  Meisner L  Lanza R 《Nature》2006,439(7073):216-219
The most basic objection to human embryonic stem (ES) cell research is rooted in the fact that ES cell derivation deprives embryos of any further potential to develop into a complete human being. ES cell lines are conventionally isolated from the inner cell mass of blastocysts and, in a few instances, from cleavage stage embryos. So far, there have been no reports in the literature of stem cell lines derived using an approach that does not require embryo destruction. Here we report an alternative method of establishing ES cell lines-using a technique of single-cell embryo biopsy similar to that used in pre-implantation genetic diagnosis of genetic defects-that does not interfere with the developmental potential of embryos. Five putative ES and seven trophoblast stem (TS) cell lines were produced from single blastomeres, which maintained normal karyotype and markers of pluripotency or TS cells for up to more than 50 passages. The ES cells differentiated into derivatives of all three germ layers in vitro and in teratomas, and showed germ line transmission. Single-blastomere-biopsied embryos developed to term without a reduction in their developmental capacity. The ability to generate human ES cells without the destruction of ex utero embryos would reduce or eliminate the ethical concerns of many.  相似文献   

12.
By transfecting an Oct-4 expression plasmid into embryonic stem cells (ES cells), the ES-O cell line was constructed, which sustained the expression of Oct-4 gene when induced by retinoic acid. Forced expression of Oct-4 gene could not sustain the stem property of ES-O cells without the differentiation inhibiting factor LIF, but if LIF exists, forced expression of Oct-4 gene could enhance the ability to sustain the undifferentiation state and inhibit cell differentiation induced by retinoic acid. It was indicated that Oct-4 must cooperate with LIF to sustain the undifferentiation state of ES cells. During the cell differentiation, ES-O cells tend to differentiate into neural cells, suggesting that forced expression of Oct-4 gene may be in relation with the differentiation of neuroderm.  相似文献   

13.
Stem cells are defined as self-renewing cell populations that can differentiate into multiple distinct cell types. However, hundreds of different human cell lines from embryonic, fetal and adult sources have been called stem cells, even though they range from pluripotent cells-typified by embryonic stem cells, which are capable of virtually unlimited proliferation and differentiation-to adult stem cell lines, which can generate a far more limited repertoire of differentiated cell types. The rapid increase in reports of new sources of stem cells and their anticipated value to regenerative medicine has highlighted the need for a general, reproducible method for classification of these cells. We report here the creation and analysis of a database of global gene expression profiles (which we call the 'stem cell matrix') that enables the classification of cultured human stem cells in the context of a wide variety of pluripotent, multipotent and differentiated cell types. Using an unsupervised clustering method to categorize a collection of approximately 150 cell samples, we discovered that pluripotent stem cell lines group together, whereas other cell types, including brain-derived neural stem cell lines, are very diverse. Using further bioinformatic analysis we uncovered a protein-protein network (PluriNet) that is shared by the pluripotent cells (embryonic stem cells, embryonal carcinomas and induced pluripotent cells). Analysis of published data showed that the PluriNet seems to be a common characteristic of pluripotent cells, including mouse embryonic stem and induced pluripotent cells and human oocytes. Our results offer a new strategy for classifying stem cells and support the idea that pluripotency and self-renewal are under tight control by specific molecular networks.  相似文献   

14.
胚胎干细胞(embryonic stem cells,ES)在体外分化培养条件下可以分化出各种组织细胞,其中包括心肌细胞。ES细胞在体外向心肌细胞分化与体内完整胚胎心肌发育过程相符合。该细胞在体外分化过程中顺序表达心肌细胞特有结构蛋白和离子通道,如肌球蛋白轻链和重链、特异性肌动蛋白、电压依赖性Ca^2 通道、K^ 通道等。ES细胞分化来源的心肌细胞具有体内心肌细胞的生理学特点,如产生的动作电位、表现自发性收缩等。因此,ES细胞是研究心肌细胞发育分化机制及鉴定其关键基因的理想模型。  相似文献   

15.
Monoclonal mice generated by nuclear transfer from mature B and T donor cells   总被引:44,自引:0,他引:44  
Hochedlinger K  Jaenisch R 《Nature》2002,415(6875):1035-1038
Cloning from somatic cells is inefficient, with most clones dying during gestation. Cloning from embryonic stem (ES) cells is much more effective, suggesting that the nucleus of an embryonic cell is easier to reprogram. It is thus possible that most surviving clones are, in fact, derived from the nuclei of rare somatic stem cells present in adult tissues, rather than from the nuclei of differentiated cells, as has been assumed. Here we report the generation of monoclonal mice by nuclear transfer from mature lymphocytes. In a modified two-step cloning procedure, we established ES cells from cloned blastocysts and injected them into tetraploid blastocysts to generate mice. In this approach, the embryo is derived from the ES cells and the extra-embryonic tissues from the tetraploid host. Animals cloned from a B-cell nucleus were viable and carried fully rearranged immunoglobulin alleles in all tissues. Similarly, a mouse cloned from a T-cell nucleus carried rearranged T-cell-receptor genes in all tissues. This is an unequivocal demonstration that a terminally differentiated cell can be reprogrammed to produce an adult cloned animal.  相似文献   

16.
In vitro cultured embryonic stem (ES) cells are derived from the inner cell mass (ICM) of pre-implantation embryos, and are capable of giving rise to all cell and tissue types of the three germ layers upon being injected back into blastocysts. These ceils are therefore said to possess pluripotency that can be maintained infinitely in culture under optimal conditions. Such pluripotency maintenance is believed to be due to the symmetrical cleavage of the cells in an undifferentiated state. The pluripotency of ES cells is the basis for their various practical and potential applications. ES cells can be used as donor cells to generate knockout or transgenic animals, as in vitro models of mammalian development, and as cell resources for cell therapy in regenerative medicine. The further success in these applications, particularly in the last two, is dependent on the establishment of a culture system with components in the medium clearly defined and the subsequent procedures for controlled differentiation of the cells into specific lineages. In turn, elucidating the molecular mechanism for pluripotency maintenance of ES cells is the prerequisite. This paper summarizes the recent progresses in this area, focusing mainly on the LIF/STAT3, BMPs/Smads, canonical Wnt, TGFβ/activin/nodal, PI3K and FGF signaling pathways and the genes such as oct4, nanog that are crucial in ES cell pluripotency maintenance. The regulatory systems of pluripotency maintenance in both mouse and human ES cells are also discussed. We believe that the cross-talkings between these signaling pathways, as well as the regulatory system underlying pluripotency maintenance will be the main focus in the area of ES cell researches in the future.  相似文献   

17.
18.
用大鼠心肌条件培养基建立来源于C57BL/6J小鼠的ES细胞系   总被引:7,自引:0,他引:7  
报道一种新的建立C57BL/6J小鼠ES细胞系的方法。采用大鼠心肌条件培养基,在不使用饲养层细胞和白血病抑制因子(LIF)的情况下,从C57BL/6J品系小鼠中建成1个ES细胞系即MESPU 41,成系率为1.0%。MESPU 41细胞为XX型,核型正常率高达89%,表现出XX型ES细胞系少有的稳定性。进行体内分化实验时MESPU 41细胞能发生广泛分化形成畸胎瘤。嵌合体制作实验证实MESPU 41细胞具有嵌合能力,能参与胚胎的发育。采用RT-PCR方法,检测出大鼠心肌细胞有LIF mRNA的表达,这可能与其条件培养基保持ES细胞未分化状态并使X染色体稳定有关。同时,还对大鼠心肌细胞进行了永生化的尝试,共得到了4个永生化克隆,这将进一步简化ES细胞建系和培养工作,为进一步研究ES细胞在体外培养过程中的稳定性开创了新的起点。  相似文献   

19.
20.
The adenohypophysis (anterior pituitary) is a major centre for systemic hormones. At present, no efficient stem-cell culture for its generation is available, partly because of insufficient knowledge about how the pituitary primordium (Rathke's pouch) is induced in the embryonic head ectoderm. Here we report efficient self-formation of three-dimensional adenohypophysis tissues in an aggregate culture of mouse embryonic stem (ES) cells. ES cells were stimulated to differentiate into non-neural head ectoderm and hypothalamic neuroectoderm in adjacent layers within the aggregate, and treated with hedgehog signalling. Self-organization of Rathke's-pouch-like three-dimensional structures occurred at the interface of these two epithelia, as seen in vivo, and various endocrine cells including corticotrophs and somatotrophs were subsequently produced. The corticotrophs efficiently secreted adrenocorticotropic hormone in response to corticotrophin releasing hormone and, when grafted in vivo, these cells rescued the systemic glucocorticoid level in hypopituitary mice. Thus, functional anterior pituitary tissue self-forms in ES cell culture, recapitulating local tissue interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号