首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
In vitro cultured embryonic stem (ES) cells are derived from the inner cell mass (ICM) of pre-implantation embryos, and are capable of giving rise to all cell and tissue types of the three germ layers upon being injected back into blastocysts. These ceils are therefore said to possess pluripotency that can be maintained infinitely in culture under optimal conditions. Such pluripotency maintenance is believed to be due to the symmetrical cleavage of the cells in an undifferentiated state. The pluripotency of ES cells is the basis for their various practical and potential applications. ES cells can be used as donor cells to generate knockout or transgenic animals, as in vitro models of mammalian development, and as cell resources for cell therapy in regenerative medicine. The further success in these applications, particularly in the last two, is dependent on the establishment of a culture system with components in the medium clearly defined and the subsequent procedures for controlled differentiation of the cells into specific lineages. In turn, elucidating the molecular mechanism for pluripotency maintenance of ES cells is the prerequisite. This paper summarizes the recent progresses in this area, focusing mainly on the LIF/STAT3, BMPs/Smads, canonical Wnt, TGFβ/activin/nodal, PI3K and FGF signaling pathways and the genes such as oct4, nanog that are crucial in ES cell pluripotency maintenance. The regulatory systems of pluripotency maintenance in both mouse and human ES cells are also discussed. We believe that the cross-talkings between these signaling pathways, as well as the regulatory system underlying pluripotency maintenance will be the main focus in the area of ES cell researches in the future.  相似文献   

2.
By transfecting an Oct-4 expression plasmid into embryonic stem cells (ES cells), the ES-O cell line was constructed, which sustained the expression of Oct-4 gene when induced by retinoic acid. Forced expression of Oct-4 gene could not sustain the stem property of ES-O cells without the differentiation inhibiting factor LIF, but if LIF exists, forced expression of Oct-4 gene could enhance the ability to sustain the undifferentiation state and inhibit cell differentiation induced by retinoic acid. It was indicated that Oct-4 must cooperate with LIF to sustain the undifferentiation state of ES cells. During the cell differentiation, ES-O cells tend to differentiate into neural cells, suggesting that forced expression of Oct-4 gene may be in relation with the differentiation of neuroderm.  相似文献   

3.
REST maintains self-renewal and pluripotency of embryonic stem cells   总被引:3,自引:0,他引:3  
  相似文献   

4.
5.
The ground state of embryonic stem cell self-renewal   总被引:3,自引:0,他引:3  
  相似文献   

6.
7.
Control of ground-state pluripotency by allelic regulation of Nanog   总被引:1,自引:0,他引:1  
Miyanari Y  Torres-Padilla ME 《Nature》2012,483(7390):470-473
Pluripotency is established through genome-wide reprogramming during mammalian pre-implantation development, resulting in the formation of the naive epiblast. Reprogramming involves both the resetting of epigenetic marks and the activation of pluripotent-cell-specific genes such as Nanog and Oct4 (also known as Pou5f1). The tight regulation of these genes is crucial for reprogramming, but the mechanisms that regulate their expression in vivo have not been uncovered. Here we show that Nanog--but not Oct4--is monoallelically expressed in early pre-implantation embryos. Nanog then undergoes a progressive switch to biallelic expression during the transition towards ground-state pluripotency in the naive epiblast of the late blastocyst. Embryonic stem (ES) cells grown in leukaemia inhibitory factor (LIF) and serum express Nanog mainly monoallelically and show asynchronous replication of the Nanog locus, a feature of monoallelically expressed genes, but ES cells activate both alleles when cultured under 2i conditions, which mimic the pluripotent ground state in vitro. Live-cell imaging with reporter ES cells confirmed the allelic expression of Nanog and revealed allelic switching. The allelic expression of Nanog is regulated through the fibroblast growth factor-extracellular signal-regulated kinase signalling pathway, and it is accompanied by chromatin changes at the proximal promoter but occurs independently of DNA methylation. Nanog-heterozygous blastocysts have fewer inner-cell-mass derivatives and delayed primitive endoderm formation, indicating a role for the biallelic expression of Nanog in the timely maturation of the inner cell mass into a fully reprogrammed pluripotent epiblast. We suggest that the tight regulation of Nanog dose at the chromosome level is necessary for the acquisition of ground-state pluripotency during development. Our data highlight an unexpected role for allelic expression in controlling the dose of pluripotency factors in vivo, adding an extra level to the regulation of reprogramming.  相似文献   

8.
9.
Distinctive properties of stem cells are not autonomously achieved, and recent evidence points to a level of external control from the microenvironment. Here, we demonstrate that self-renewal and pluripotent properties of human embryonic stem (ES) cells depend on a dynamic interplay between human ES cells and autologously derived human ES cell fibroblast-like cells (hdFs). Human ES cells and hdFs are uniquely defined by insulin-like growth factor (IGF)- and fibroblast growth factor (FGF)-dependence. IGF 1 receptor (IGF1R) expression was exclusive to the human ES cells, whereas FGF receptor 1 (FGFR1) expression was restricted to surrounding hdFs. Blocking the IGF-II/IGF1R pathway reduced survival and clonogenicity of human ES cells, whereas inhibition of the FGF pathway indirectly caused differentiation. IGF-II is expressed by hdFs in response to FGF, and alone was sufficient in maintaining human ES cell cultures. Our study demonstrates a direct role of the IGF-II/IGF1R axis on human ES cell physiology and establishes that hdFs produced by human ES cells themselves define the stem cell niche of pluripotent human stem cells.  相似文献   

10.
11.
Mouse embryonic stem cells(mESCs)derived from inner cell mass(ICM)of pre-implantation embryos,can maintain undifferentiated state when cultured in N2B27 medium supplemented with GSK3inhibitor CHIR99021 and MEK inhibitor PD0325901(‘‘2i’’)and leukemia inhibitor factor(LIF).Compare to conventional culture medium,all components of this medium are defined.With the N2B27 medium,‘‘2i’’and LIF,mESCs can contribute to the germline of the chimeric embryos,however,whether the‘‘all-ES cells’’mice can been generated by tetraploid complementation is unclear yet,while the tetraploid complementation serve as a golden standard to assess the pluripotency of ES cells.Here,our study showed that mESCs derived and cultured with the N2B27 complete medium could generate fertile mice by tetraploid complementation.In addition,the survival rate of tetraploid complementation mice produced by inbred mES cell lines is higher than the conventional culture condition,and increased the percentage of Oct4 positive cells contrast to conventional medium either.Therefore,the N2B27 medium supplemented with‘‘2i’’and LIF is an alternative choice forthe derivation and long-term culture of mouse embryonic stem cells.  相似文献   

12.
信号转导和转录激活因子3(STAT3)在动物的早期胚胎发生、细胞生长、凋亡控制和细胞运动等过程中起着很重要的作用。以小鼠为材料,利用原位杂交和免疫组化等方法,研究了促性腺激素对性未成熟小鼠子宫中STAT3表达和激活的调节。用PMSG处理性未成熟的小鼠,可刺激子宫腔上皮和腺上皮中STAT3的表达上调、发生酪氨酸磷酸化和核转位而激活。hCG单独处理也能导致STAT3表达的上升和酪氨酸磷酸化的发生,但反应较慢。PMSG处理48h后再以hCG处理24h内能促进子宫腔上皮、腺上皮、基质和肌层细胞中STAT3的表达和激活。研究表明,促性腺激素处理能够上调小鼠子宫中STAT3的表达和激活,促性腺激素处理后小鼠子宫的增殖可能与Jaks-STAT3通路的激活有关。  相似文献   

13.
14.
15.
Silva J  Chambers I  Pollard S  Smith A 《Nature》2006,441(7096):997-1001
Through cell fusion, embryonic stem (ES) cells can erase the developmental programming of differentiated cell nuclei and impose pluripotency. Molecules that mediate this conversion should be identifiable in ES cells. One candidate is the variant homeodomain protein Nanog, which has the capacity to entrain undifferentiated ES cell propagation. Here we report that in fusions between ES cells and neural stem (NS) cells, increased levels of Nanog stimulate pluripotent gene activation from the somatic cell genome and enable an up to 200-fold increase in the recovery of hybrid colonies, all of which show ES cell characteristics. Nanog also improves hybrid yield when thymocytes or fibroblasts are fused to ES cells; however, fewer colonies are obtained than from ES x NS cell fusions, consistent with a hierarchical susceptibility to reprogramming among somatic cell types. Notably, for NS x ES cell fusions elevated Nanog enables primary hybrids to develop into ES cell colonies with identical frequency to homotypic ES x ES fusion products. This means that in hybrids, increased Nanog is sufficient for the NS cell epigenome to be reset completely to a state of pluripotency. We conclude that Nanog can orchestrate ES cell machinery to instate pluripotency with an efficiency of up to 100% depending on the differentiation status of the somatic cell.  相似文献   

16.
17.
18.
19.
Stem cell self-renewal implies proliferation under continued maintenance of multipotency. Small changes in numbers of stem cells may lead to large differences in differentiated cell numbers, resulting in significant physiological consequences. Proliferation is typically regulated in the G1 phase, which is associated with differentiation and cell cycle arrest. However, embryonic stem (ES) cells may lack a G1 checkpoint. Regulation of proliferation in the 'DNA damage' S/G2 cell cycle checkpoint pathway is known for its role in the maintenance of chromatin structural integrity. Here we show that autocrine/paracrine gamma-aminobutyric acid (GABA) signalling by means of GABA(A) receptors negatively controls ES cell and peripheral neural crest stem (NCS) cell proliferation, preimplantation embryonic growth and proliferation in the boundary-cap stem cell niche, resulting in an attenuation of neuronal progenies from this stem cell niche. Activation of GABA(A) receptors leads to hyperpolarization, increased cell volume and accumulation of stem cells in S phase, thereby causing a rapid decrease in cell proliferation. GABA(A) receptors signal through S-phase checkpoint kinases of the phosphatidylinositol-3-OH kinase-related kinase family and the histone variant H2AX. This signalling pathway critically regulates proliferation independently of differentiation, apoptosis and overt damage to DNA. These results indicate the presence of a fundamentally different mechanism of proliferation control in these stem cells, in comparison with most somatic cells, involving proteins in the DNA damage checkpoint pathway.  相似文献   

20.
用大鼠心肌条件培养基建立来源于C57BL/6J小鼠的ES细胞系   总被引:7,自引:0,他引:7  
报道一种新的建立C57BL/6J小鼠ES细胞系的方法。采用大鼠心肌条件培养基,在不使用饲养层细胞和白血病抑制因子(LIF)的情况下,从C57BL/6J品系小鼠中建成1个ES细胞系即MESPU 41,成系率为1.0%。MESPU 41细胞为XX型,核型正常率高达89%,表现出XX型ES细胞系少有的稳定性。进行体内分化实验时MESPU 41细胞能发生广泛分化形成畸胎瘤。嵌合体制作实验证实MESPU 41细胞具有嵌合能力,能参与胚胎的发育。采用RT-PCR方法,检测出大鼠心肌细胞有LIF mRNA的表达,这可能与其条件培养基保持ES细胞未分化状态并使X染色体稳定有关。同时,还对大鼠心肌细胞进行了永生化的尝试,共得到了4个永生化克隆,这将进一步简化ES细胞建系和培养工作,为进一步研究ES细胞在体外培养过程中的稳定性开创了新的起点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号