首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《广东科技》2016,(17):54-56
正一、谁弄脏了我们的空气?到底是谁弄脏了我们的空气,首先要搞清楚雾霾的源结构,我比较同意国际上一些说法。2015年发布的全球CO_2排放源结构图显示,世界上33%的CO_2排放是由交通运输产生,29%的CO_2排放量是由工业生产引起,27%的CO_2排放量是由社会生活造成,商业和其他占了11%排放量。目前,中国汽车保有量在大幅  相似文献   

2.
天然气掺氢火花点火式发动机排放性能研究   总被引:1,自引:1,他引:0  
在一台天然气掺氢的火花点火发动机上,研究了掺氢比和过量空气系数对发动机排放性能的影响.结果表明,在掺氢比一定时,过量空气系数对 HC、CO、Nox 和 CO2排放有较大的影响.在相同过量空气系数下,随着掺氢比的增加,HC 排放量有所降低,特别是稀燃下的 HC 排放量大幅降低.Nox排放量随掺氢比的增加而增加,而 CO2排放量随掺氢比的增加而减少.掺氢后,发动机的稀燃极限有所提高,稀燃条件下发动机的HC、CO、CO2 和 Nox的排放量比较低.  相似文献   

3.
膜法富氧进气降低点燃式发动机冷起动排放   总被引:2,自引:0,他引:2  
研究了富氧进气对火花点火发动机冷起动排放的影响.试验在一台四行程、空冷125 mL单缸电控喷射火花点火LPG发动机上进行.试验中分别为发动机供应φO2=21%,23%,25%的进气,实时测量发动机冷起动阶段最初60 s内过量空气系数λ及HC、CO和NOx的排放.试验结果表明,发动机采用富氧进气后,HC和CO的排放量显著降低.与φO2=21%氧浓度进气比较,φO2=23%进气时,冷起动最初60 s内HC与CO排放累计量分别降低46%和54%;φO2=25%进气时,分别降低65%和80%.当进气φO2由23%提高到25%后,HC和CO排放减少量不多,仅为36%和26%,而NOx排放增加明显.因此,使用富氧进气降低冷起动排放时,φO2控制在23%左右为宜.  相似文献   

4.
机动车保有量迅速增长,车辆排放大量尾气对环境及人体造成严重影响。以厦门为例,运用国内外研究成果,结合排放因子、机动车年平均行驶里程和机动车保有量,计算机动车CO排放量。由计算结果可知:机动车CO排放量在总体上呈下降趋势,但其减少速度与机动车保有量增长速度相比较为缓慢;相同车型在不同排放标准下,国Ⅲ标准车辆排放CO占比最高,为35%,其次是国Ⅱ标准车辆,约25%;相同排放标准下,轻型客车排放量最高,超过46%,其次是轻型货车,约34%;根据预测,在受控情况下,机动车CO排放量大幅下降。  相似文献   

5.
福建省能源消费的二氧化碳排放与结构分析   总被引:1,自引:0,他引:1  
基于能源消费统计数据,利用《IPCC 2006国家温室气体清单指南》推荐的基准方法,对1997—2007年福建省能源消费结构、能源消费的二氧化碳(CO2)排放量、产业的CO2排放分布、CO2排放强度进行计算并分析.结果表明:1997—2007年福建省能源消费总量和CO2排放量均呈显著上升趋势;在各产业部门中,以工业为主的第二产业是能源消费和CO2排放的主体,在CO2排放总量中所占的比重近年来有加大的趋势,第一、第三产业和生活消费CO2排放所占比重都有所减小;1997—2007年福建省CO2排放强度和人均CO2排放量都有增长的趋势.  相似文献   

6.
利用平面激光诱导荧光(PLIF)、高温细丝热电偶及红外气体分析仪对不同空气湿度下的双旋流合成气非预混燃烧流场进行了实验研究.实验结果表明,随着空气湿度的增加,合成气火焰的基本形态已经发生很大变化,燃烧室中心轴线处OH自由基浓度越来越低,荧光信号强度明显变弱,火焰根部逐渐出现W型分布特征,燃烧室排气温度缓慢下降;当空气加湿量φ(空气中水蒸气体积与干空气体积之比)为0~30%时,CO排放量变化不大,但是当φ=40%时CO排放迅速增加,而当φ=50%时,CO排放已经不稳定,燃烧振荡,容易熄火.此外,NOx排放随着φ增加下降明显,但是当φ20%时,NOx排放的下降趋势会变慢,继续增加水蒸气对NOx排放的影响不大.  相似文献   

7.
亚热带喀斯特森林土壤CO2排放量动态研究   总被引:9,自引:0,他引:9  
该文用吸收阱法研究了亚热带喀斯特森林土壤CO2排放量在不同季节的昼夜变化规律。得出茂兰喀斯特森林土壤中CO2排放量与气候变化有关,冬春季森林土壤CO2排放量较小,夏秋季土壤CO2排放量大。春季CO2的排放量日均为65.5277mg.m^-2.h^-1,夏季为281.7385mg.m^-2.h^-1,秋季为339.6792mg.m^-2.h^-1,冬季为206.5868mg.m^-2.h^-1。年均排放量为1.9568kg.m^-2.yr^-1。排放量的昼夜变化明显,春季14点至18点排放量最大,18点至22点最小;秋季则为19点至23点排放量最大,凌里3点至7点最小。春夏季白天的排放量大于夜间排放量,秋冬季则夜间排放量大于白天排放量。  相似文献   

8.
天然温带草地CO2通量排放规律研究   总被引:1,自引:0,他引:1  
以天然状态下(无牧、无施肥、无割草、无灌溉)内蒙古温带半干旱典型草原羊草草原为主要研究对象,利用静态箱法和气相色谱法进行草地田间CO2通量的原位观测实验.采用SPSS统计分析软件,研究分析了1998年5月至1999年5月,2001年至2003年,共4个实验观测年CO2通量的观测数据与主要的环境因子(土壤含水量、降雨量、空气温度、地表温度、不同土层温度)间的相关性.结果表明:温带草地土壤CO2排放通量具有明显的日变化特征,不同的生长状态对于其日变化特征具有明显的影响;主要的环境因子中只有表层土壤含水量与草地CO2排放通量的日变化具有显著的正相关性;草地CO2排放通量的季节变化显著而且不同的年份其变化特征也各不相同;降雨量的季节分布与其季节通量的变化特征间具有极显著的正相关性;4年的实验观测的统计分析表明:表层土壤含水量是温带半干旱草地CO2排放通量主要控制因子.CO2排放通量的年际变化不显著,以4年观测的平均年通量估算我国温带草地CO2年排放量是3.17 Pg,约占全球土壤CO2年排放量的1.23%,对于全球碳循环有着重要影响.  相似文献   

9.
在点进气道电控喷射汽油机台架上,分别使用汽油、B10和B30这3种燃料在-7℃环境温度下,对冷启动过程中催化剂后的常规排放和非常规排放特性进行了研究,利用化学动力学方法,分析了非常规排放物的主要形成途径.结果表明:在冷启动的最初120 s内,随着燃料中丁醇比例的增大,3种燃油的HC排放量和CO排放量逐步减少;每种燃料的HC和CO排放量均是先增加再减少;对于非常规污染物,随着燃油中丁醇体积分数从10%增加到30%,乙烯排放体积分数提高37.0%,甲醛排放量增加67.6%,乙醛排放量增加69.9%,苯排放量减少40.5%,甲烷排放体积分数减少16.0%,乙炔排放体积分数变化不明显.  相似文献   

10.
钢铁企业CO2排放模型及减排策略   总被引:2,自引:2,他引:0  
建立了钢铁企业CO2 排放数学模型.以国内某钢铁企业为例,根据生产数据计算得到CO2 年排放量,分析了能源结构和产品结构对CO2 排放的影响.利用情景分析法对钢铁企业CO2 减排的途径和策略进行了分析,假设天然气取代动力煤、短流程取代长流程、考虑先进工序能耗水平和使用余热回收技术四种情景.分析对比结果表明:余热回收技术的采用对CO2减排效果较小,约为3.39%;用短流程取代长流程的CO2 减排效果最好,约为45.07%,若考虑电炉用电产生的间接CO2 排放,仍可实现减排24.30%.  相似文献   

11.
为了分析天然气掺氢燃料对发动机动力性、经济性和排放性的影响,在一台电控单缸天然气发动机上开展了体积掺氢比分别为15%、20%和25%的天然气掺氢燃料的试验和过量空气系数对发动机性能的影响试验.结果表明,在特定发动机工况下,随着掺氢比的增加,缸内最高压力随之增加;NOx排放量增大,而HC、CO排放量降低;有效燃气消耗率降低.试验结果也表明稀燃可以改善发动机的排放性能.  相似文献   

12.
中国工业源大气盐基阳离子排放量估算   总被引:4,自引:1,他引:4  
盐基阳离子排放清单的建立 ,对于中国酸沉降控制有重要的意义。针对电力、建材和钢铁工业 ,基于颗粒物的排放量和化学组成 ,分别计算工业点源和工业面源的大气盐基阳离子排放量 ,并绘制中国盐基阳离子排放强度分布图。结果表明 ,中国 2 0 0 0年工业源排放盐基阳离子总量为 4 17.0万 t,其中工业面源占 81.0 %。中国工业源盐基阳离子排放强度分布呈现东部高西部低的格局 ,最大值出现在河南省 ,达到了 2 12 .8kmol.km- 2 .a- 1。  相似文献   

13.
天然气掺氢发动机性能试验   总被引:3,自引:0,他引:3  
以台架实验的方法,对发动机燃用天然气(CNG)和天然气掺氢(HCNG)燃料的动力性和排放性能进行了对比研究.结果表明,发动机燃用天然气掺氢燃料能够加快缸内燃烧过程,改善CNG发动机稀燃性能,降低发动机排温.与纯天然气发动机相比,其排放物CO、CO2、HC得到降低,同时NOx排放量增加,但随着过量空气系数的增大,发动机NOx排放大幅减少,得到较优的排放性能.  相似文献   

14.
赵晨光 《科技信息》2007,(36):167-167,176
研究了进气中O2浓度对汽油机燃烧和排放特性的影响,分析富氧燃烧的节能和环保效应。试验在一台单缸汽油机上进行,分别为发动机提供环境空气和O2浓度为24%的富氧空气,对比分析缸内压力、放热以及有害物的排放。结果表明,进气中氧气浓度的提高有利于混合燃烧的优化,减少HC和CO排放,但NOX排放量增加。  相似文献   

15.
三峡库区重庆段农业面源污染负荷的区域分异与预测   总被引:3,自引:0,他引:3  
采用污染排放系数法,估算了三峡库区重庆段1998—2011年间21个区县的农业化肥、畜禽养殖和农村生活3类污染源的COD、NH3-N、TN、TP平均排放量.利用GIS对污染排放量的空间分异进行了解析,运用投影寻踪耦合模型对三峡库区重庆段农业面源污染高排放和低排放两种情况下的农业面源污染排放量进行预测.结果显示,三峡库区重庆段1998—2011年的COD、NH3-N、TN和TP平均年排放量分别449551.65t、91646.4t、134076.92t和61651.66t;农业化肥对农业面源污染的贡献率最高,达到了50.38%,是库区面源污染控制的主要对象;农业面源污染排放量和排放强度具有区域性,库尾都市核心城市排放量少、排放强度低;腹地和外围山地污染排放量和排放强度大,主要是农业化肥和畜禽养殖污染;BPPP模型预测结果表明,高排放情况的模拟对减缓农业面源污染的作用不大;低排放情况的模拟会使各类污染排放量下降20%,农业面源污染将会得到较好的控制.因此,要加大农业面源污染的治理力度,根据区域农业经济发展的特点和地理环境,制定因地制宜,分类分区控制技术,实行严格管理的措施,从源头防治农业面源污染.  相似文献   

16.
冬季低温地区道路移动源大气污染物排放清单   总被引:1,自引:0,他引:1  
研究了冬季低温地区道路移动源排放清单及污染特征.以长春市为例,基于测试和“道路机动车大气污染物排放清单编制技术指南”,建立了2016年全年的道路移动源大气污染物排放清单,利用ArcGIS进行空间分配,并基于IVE模型分析典型车辆启动排放贡献率.结果表明,长春市道路移动源CO,HC,NOx,PM2.5和PM10年排放量分别为13.17,2.90,4.09,0.22,0.24万t;小型客车和重型货车分别为CO,HC和NOx,PM10的主要来源;启动阶段,长春市典型车辆冬季启动贡献率高于上海市;另外,道路移动源排放强度呈现出由城市中心向边缘递减的趋势.  相似文献   

17.
运用元素势能法对乙醇重整富氢混合气的燃烧与排放性能进行了理论分析,计算结果表明:可实现稀燃的乙醇重整富氢混合气能有效地降低NO,CO和CO2排放;对于稀乙醇重整富氢混合气,在相同过量空气系数下,其绝热火焰温度、NO和CO的排放随乙醇重整率的变化不超过1%,CO2的排放随重整率的增大而下降3%.  相似文献   

18.
通过对太原市机动车运营特征的分析,采用修正的MOBILE6.2模式,对主要参数进行本地化修正,计算了太原市机动车排放的气态污染物排放因子,并确定了太原市分车型污染物的排放总量和分车型的排放分担率.结果表明,2011年太原市机动车CO、HC和NOx的总排放量分别为42.44×104 t、3.93×104 t和4.71×101 t.分析得出,轻型客车是主要的排放源,分别占(质量分数)82.50%、76.61%和45.40%,其原因是由于轻型客车27.5%的年增长率以及较高的排放因子共同造成的;重型车是NOx排放的第二大排放源,占NOx总排放量的36.47%.以上两种车型是太原市机动车排放污染控制的重点.  相似文献   

19.
研究依据2006年IPCC国家温室气体清单指南中的方法对2003—2008年江苏太仓市一次能源消耗产生的CO2排放量进行了估算,并利用Kaya恒等式进行了分解分析,同时计算了2003—2008年当地的单位国内生产总值(GDP)CO2排放量(来自一次能源消耗);结果表明2003—2008年当地一次能源消耗产生的CO2排放总量呈上升趋势,而单位GDP CO2排放量呈现倒U型曲线;经济的发展和能源效率是影响排放量的主要因素,而发展清洁能源、改善能源结构则是未来当地降低由能源消耗产生的CO2排放量、实现低碳生态发展模式的重要战略选择.  相似文献   

20.
天然气发电的环境效益分析   总被引:5,自引:0,他引:5       下载免费PDF全文
在对燃气和燃煤发电的全生命周期清单分析的基础上,引入环境外部成本概念,计算两种火力发电的生命周期成本.分析结果表明,天然气发电生命周期过程中CO2总排放量为412.78 g/(kW·h),仅为燃煤排放量的48%,其他废气如SO2、CO和PM的生命周期排放总量分别为燃煤的10%,24%和8%.天然气发电的生命周期成本为0.454 8元/(kW·h),其中外部成本是0.0587元/(kW·h),仅为燃煤发电的39%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号