首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
采用真空坩埚下降法生长了白色发光二极管(LED)用Ce:YAG晶体,该生长方法所得晶体的Ce3+掺杂浓度较高,相对色温(3 751K)低于传统方法所生长的Ce:YAG晶体,其激发峰是位于460nm左右的宽峰,与蓝光LED的发射波长相匹配,有望代替黄色荧光粉用于白光LED.随驱动电流增加,白光LED的发光效率逐渐降低,相对色温几乎不变.在100mA时,白光LED显色指数达到最大值.  相似文献   

2.
YAG:Ce黄色荧光粉高温固相合成与表征   总被引:6,自引:0,他引:6  
荧光粉是制备白光发光二极管(LED)关键材料之一,其性能直接影响着白光LED亮度、色度、色温及显色指数.但是,现有荧光粉由于稳定性差、光衰严重等问题,使白光LED不能达到预期目标,迫切需要改进其制备工艺.采用高温固相合成法制备YAG:Ce3 黄色荧光粉,研究温度、Ce添加量等对荧光粉粒度、荧光强度等理化性质影响规律,并评价该荧光粉与蓝光LED芯片组合形成白光LED的性能.结果表明,烧结温度高于1 400℃时,荧光粉呈立方结构纯YAG晶相;温度越高,形成的粉末粒径越大,发光强度越高;Ce掺杂量x=0.06时,烧结的荧光粉发光强度最大;封装形成的Φ3 mm白光LED亮度为5 581 cd/m2,色坐标x=0.262 6,y=0.275 3,色温Tc=13 000 K.  相似文献   

3.
半导体量子点具有量子尺寸效应,其半导体带隙随着量子点尺寸的减小而增大.在油酸石蜡绿色合成体系中通过引入表面活性剂油胺来调控Cd Se量子点尺寸.加入油胺可得到大粒径的Cd Se量子点,其发光光谱范围可以扩展到红光区域,得到发射波长为630 nm的量子点.对红光量子点进行二氧化硅包覆得到稳定的光转换材料,并与蓝光LED芯片以及黄光荧光粉进行封装得到显色指数Ra为90的高显色指数白光LED器件.  相似文献   

4.
为寻找应用于白光LED的红色荧光粉,采用固相法成功地合成了Ba0.5Sr0.5MoO4∶Pr3+x(0.005≤x≤0.04)红光荧光粉,并对样品分别进行了X射线衍射分析、透射电镜测试和荧光光谱的测定.通过表征可知,该荧光粉可被400~500 nm蓝光范围有效激发,掺杂Pr3+并未显著影响样品的晶体结构,最佳掺杂x为0.02.同时讨论了温度和基质对晶体结构以及发光性能的影响.  相似文献   

5.
采用化学共沉淀法制备了Sm3+掺杂浓度不同的SrWO4∶Sm3+系列发光粉体,所制备的粉体均具有Sm3+离子特征的强室温红色荧光发射。通过调节掺杂浓度来调控近紫外和蓝光吸收强度,进而调控用404nm的近紫外光和480nm的蓝光激发样品所得红光发光强度。研究结果表明所制备的SrWO4∶Sm3+红色荧光粉可以被紫外和蓝光LED有效激发,且可作为红光发光二极管用荧光粉。  相似文献   

6.
用共沉淀法合成YAG:(Ce3+-Sm3+)前驱体后,在N2还原气氛下用高温灼烧法制备YAG:(Ce3+-Sm3+)荧光粉,并对Sm3+的掺杂浓度、样品的晶相以及表面形貌进行研究。同时,也对Sm3+与Ce3+之间Sm3+→Ce3+的能量转移机理进行了讨论。当Sm3+掺杂浓度(Sm3+/Ce3+为10%)时,其发射光谱强度能增加约3倍,并伴有明显的红移;合成的荧光粉体粒径大小在2~4μm时,有望与不同波长的蓝光LED组合,以期获得不同性质的白光LED。  相似文献   

7.
采用水热法合成了NaGd(WO4)2:Eu3+荧光粉.采用XRD、热失重与差热分析、荧光光谱图表征样品的结构和发光特性.结果表明,样品未经退火处理时,在266nm激发光激发下,300~600nm处有一WO2-4产生宽带发射带和Eu3+在614nm处产生的红光.发光特性证实NaGd(WO4)2:Eu3+荧光粉可用于制造单基质的白光LED.随着退火温度的升高,样品由WO2-4产生的宽带发射带逐渐减弱直至消失,最后在800℃退火的NaGd(WO4)2:Eu3+荧光粉在614nm处产生红光.从理论上分析了WO2-4的发光机理.  相似文献   

8.
采用提拉法生长了不同浓度白光LED用Ce,Sm:Y3Al5O12(YAG)荧光晶体。对3种不同浓度的Ce,Sm双掺杂单晶荧光材料的光谱性能进行了研究。分别用XRD和高效色谱仪测试了样品的结构、吸收光谱、激发光谱、发射光谱和光色性能,并对晶体的光色性能进行表征和对比。结果表明,在一定范围内随着Ce和Sm离子浓度的升高,晶体的光效有所提高,显色指数降低,红色和黄绿色发光成分提升。  相似文献   

9.
在白光LED封装点胶过程中,荧光粉受自身重力影响产生不完全沉降,导致白光LED的色漂移和良品率低。通过离心工艺,使荧光粉加速沉降到蓝光芯片表面,测量离心转速和离心时间对白光LED的色坐标集中度、亮度和显色指数等影响。实验结果表明,离心工艺能有效减少色漂移和提升白光LED显色指数。  相似文献   

10.
用Na+做电荷补偿剂,Sm3+做敏化剂,采用高温固相法制备了Ca0.5MoO4:Eu3+0.25-x,Sm3+x,Na+0.25(x=0,0.001,0.003,0.005,0.008,0.01,0.02,0.03,0.05,0.07,0.09)系列红色荧光粉,实验结果表明:Sm3+的加入没有改变CaMoO4:Eu3+,Na+的晶体结构,也没有改变粉体发射光谱的形状和发射峰的位置,而是加宽了荧光粉CaMoO4:Eu3+,Na+激发光谱在400 nm左右的吸收峰,有利于样品的激发峰和近紫外LED芯片相匹配,并且提高了荧光粉在615 nm处发射光谱的发光强度.本文主要对Sm3+提高荧光粉的发光强度的原理进行探讨,研究结果证明在CaMoO4基质中存在Sm3+-Eu3+之间能量传递,此外得出Sm3+的最佳掺杂浓度是0.5 at.%.  相似文献   

11.
由于YAG:Ce3+荧光粉在白光发光二极管中的广泛应用,使其受到越来越多的关注.但是出于商业利益,其最佳配方和烧结工艺却是保密的.利用固相法,通过控制所掺杂Ce3+的浓度及调节烧结温度制备一系列YAG:Ce3+荧光粉.测试结果表明:当激发光波长为460 nm时,该荧光粉的发射波长为540 nm;最佳掺杂Ce3+的浓度及烧结温度分别为2%和1 400℃;此外,发射波长有红移的现象,此更符合现代固态照明对色度的需要.  相似文献   

12.
The Sr3SiO5:Eu2 phosphor was synthesized by high temperature solid-state reaction. The emission spectrum of Sr3SiO5:Eu2 shows two bands centered at 487 and 575 nm, which well agree with the theoretic values of emission spectrum. The excitation spectrum for 575 nm emission center has several excitation bands at 365, 418, 458 and 473 nm. And the results show that the emission spectrum of Sr3SiO5:Eu2 is influenced by the Eu2 concentration. The relative emission spectra of the white-emitting InGaN-based YAG:Ce3 LED and Sr3SiO5:Eu2 LED were investigated. The results show that the color development of InGaN-based Sr3SiO5:Eu2 is better than that of InGaN-based YAG:Ce3 , and the CIE chromaticity of InGaN-based Sr3SiO5:Eu2 is (x=0.348, y=0.326).  相似文献   

13.
通过高温固相法合成系列Sm3+掺杂LnNbO4(Ln=La,Y)红色荧光粉,并对样品的物相结构、荧光特性、衰减寿命和荧光热猝灭等性能进行实验分析。分析结果表明:合成的样品不含杂质相,可以被近紫外光LED和蓝光LED芯片有效激发,发出色坐标为(0615 5,0380 2)的红光对于LnNbO4(Ln=La,Y)基质来说,Sm3+掺杂LaNbO4基质的荧光强度比较强,最佳的Sm3+掺杂浓度为2%;随着Sm3+掺杂浓度的提高衰减寿命曲线由单指数线形变双指数线形,且衰减寿命不断变短;Sm3+之间的电偶极 电偶极作用是导致荧光浓度猝灭发生的原因;样品在293~450 K这一温度范围内具有良好的热稳定性。说明Sm3+掺杂的LaNbO4红色荧光粉具备成为白光LED用红色荧光粉的潜力。  相似文献   

14.
 用溶胶-凝胶法制备了系列掺杂(La0.8Ln0.2)2/3Ca1/3MnO3(Ln=La,Ce,Pr,Nd,Sm,Eu,Gd,Dy,Ho,Er)纳米级晶体.对于所制备系列样品在同一实验条件下的测试发现,在La位被其他镧系元素部分替代后,平均晶格常数和容差因子也存在类似镧系收缩的单方向变化:随着替代原子Ln原子序数的增加,平均晶格常数a呈减少趋势,平均晶格常数b基本未发生变化,而平均晶格常数c总体来说略呈减少趋势;容差因子t在0.925~0.918之间逐渐减少,但体系仍保持钙钛矿结构.不同掺杂元素样品表面形貌和电输运行为差异很大,各样品颗粒粒度分布在30~800nm范围,转变温度在82~194K范围.铈组(La,Ce,Pr,Nd,Sm,Eu)掺杂样品的转变温度未呈现单一某一方向的变化,而钇组(Gd,Dy,Ho,Er)掺杂样品的金属-绝缘体转变温度随着原子序数的增加而增高,此变化方向的单一性与镧系收缩单一性相协调.  相似文献   

15.
寻找能应用于白光LED的红色荧光粉,以稀土氧化物为原料,采用高温固相法制备Pr3+掺杂Sr2LaTaO6系列红色荧光粉,再通过XRD、SEM及荧光光谱仪等仪器对样品的物相结构、形貌特征、荧光特性、衰减寿命和荧光热猝灭等性能进行实验分析。结果表明:样品物相纯正、结晶度好,Pr3+的掺杂没有改变基质的晶体结构;样品可以被蓝光有效激发,发出色坐标为(0663 0,0336 6)的红光;Pr3+的最佳掺杂浓度(摩尔分数)为01%,随着Pr3+掺杂浓度(摩尔分数)不断高于该浓度,其荧光强度和衰减寿命都会递减;样品在室温到400 K这一温度范围内热稳定性良好。表明Pr3+掺杂的Sr2LaTaO6红色荧光粉有望应用于白光LED。  相似文献   

16.
(Y,Gd,Eu)(PO4,BO3)红色荧光粉的制备及光谱研究   总被引:1,自引:0,他引:1  
在固相反应的基础上,采用草酸根沉淀稀土粒子使其充分混合的前处理方法,合成出一种新型的硼磷酸钇钆铕荧光红粉。对样品进行了x射线衍射、红外和荧光光谱表征。与(Y,Gd,Eu)PO4相比,产物增加了与磷元素等摩尔量的硼。硼的掺入提高了发光强度,但没有改变样品的正磷酸盐单斜晶系结构。根据样品的红外光谱,发现其吸收峰与GdPO4的很相近,说明样品与GdPQ同构;同时分析了不同浓度Gd^3+掺杂对样品发光强度的影响以及基质离子对Eu什的能量传递机理。通过对产物的分析发现其具有高的发光亮度及低的热猝灭效应,可作为一种优良的稀土三基色发光材料。最后将本实验所用方法与传统回相法对比,反应温度降低了100℃,发光强度提高了10%以上,且所得样品易粉碎、粒径小。  相似文献   

17.
采用高温固相反应法首次合成了新型红色长余辉发光材料Gd2O2S:Eu3+,Si4+,Ti4+.用X射线粉末衍射(XRD)、扫描电镜(SEM)、分光光度计等对合成产物进行了分析与表征.结果表明:Gd2O2S:Eu3+,Si4+,Ti4+的晶体结构与Gd2O2S相同,为六方晶系.颗粒的形貌为类球形.Gd2O2S:Eu3+,Si4+,Ti4+的激发光谱呈250~400 nm宽带状,激发光谱主峰位于365 nm;发射光谱为线状光谱,归属于Eu3+的5DJ(J=0,1)→7FJ(K=0,1,2,4)跃迁.最强的发射峰为627 nm和617 nm,均属于5D0→7F2跃迁,且627 nm的发射峰明显远强于617nm,显示出纯正的红色发光;并且Si4+和Ti4+离子的共掺杂可显著延长样品Cd2O2S:Eu3+的余辉时间.  相似文献   

18.
The Sr3SiO5:Eu^2+ phosphor was synthesized by high temperature solid-state reaction. The emission spectrum of Sr3SiO5:Eu^2+ shows two bands centered at 487 and 575 nm, which well agree with the theoretic values of emission spectrum. The excitation spectrum for 575 nm emission center has several excitation bands at 365, 418, 458 and 473 nm. And the results show that the emission spectrum of Sr3SiO5:Eu^2+ is influenced by the Eu^2+ concentration. The relative emission spectra of the white-emitting InGaN-based YAG:Ce^3+ LED and Sr3SiO5:Eu^2+ LED were investigated. The results show that the color development of InGaN-based Sr3SiO5:Eu^2+ is better than that of InGaN-based YAG:Ce^3+, and the CIE chromaticity of InGaN-based Sr3SiO5:Eu^2+ is (x=0.348, y=0.326).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号