首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 515 毫秒
1.
通过高温固相法合成Pr3+掺杂Sr3Y2TeO9红色荧光材料,并分析样品的物相与形貌、发光性能、浓度猝灭规律以及荧光衰减寿命等性能。结果表明:合成获得的单一相的Pr3+掺杂Sr3Y2TeO9样品,能够被450~490 nm左右的波长有效激发,发射出波长为612 nm的红光;不同物质量浓度的Pr3+掺杂会影响荧光强度,最佳Pr3+掺杂浓度为x=0003;Pr3+之间的电偶极 电偶极作用是导致荧光浓度猝灭发生的原因;x=0003 Pr3+掺杂Sr3Y2TeO9的衰减寿命约为7676 μs。因此Pr3+掺杂的Sr3Y2TeO9红色荧光粉有望用于白光LED。  相似文献   

2.
通过高温固相法合成系列Sm3+掺杂LnNbO4(Ln=La,Y)红色荧光粉,并对样品的物相结构、荧光特性、衰减寿命和荧光热猝灭等性能进行实验分析。分析结果表明:合成的样品不含杂质相,可以被近紫外光LED和蓝光LED芯片有效激发,发出色坐标为(0615 5,0380 2)的红光对于LnNbO4(Ln=La,Y)基质来说,Sm3+掺杂LaNbO4基质的荧光强度比较强,最佳的Sm3+掺杂浓度为2%;随着Sm3+掺杂浓度的提高衰减寿命曲线由单指数线形变双指数线形,且衰减寿命不断变短;Sm3+之间的电偶极 电偶极作用是导致荧光浓度猝灭发生的原因;样品在293~450 K这一温度范围内具有良好的热稳定性。说明Sm3+掺杂的LaNbO4红色荧光粉具备成为白光LED用红色荧光粉的潜力。  相似文献   

3.
为寻找应用于白光LED的红色荧光粉,采用固相法成功地合成了Ba0.5Sr0.5MoO4∶Pr3+x(0.005≤x≤0.04)红光荧光粉,并对样品分别进行了X射线衍射分析、透射电镜测试和荧光光谱的测定.通过表征可知,该荧光粉可被400~500 nm蓝光范围有效激发,掺杂Pr3+并未显著影响样品的晶体结构,最佳掺杂x为0.02.同时讨论了温度和基质对晶体结构以及发光性能的影响.  相似文献   

4.
采用改进高温固相法合成了Eu3+掺杂的LaBa2VO6红色荧光粉,用X-射线衍射仪和荧光分光光度计对样品进行了表征.结果表明:煅烧温度为900℃时,晶型形成比较完全,Eu3+成功掺入LaBa2 VO6晶格中;荧光强度随着Eu3+掺杂浓度的升高先增强后减弱,Eu3+的最佳掺杂浓度(Eu3+取代La3+的摩尔百分比)为11%;用466nm激发光源激发样品显示出强616nm红光发射.该荧光粉与蓝光LED相匹配,适合用于蓝光转换型红色荧光粉.  相似文献   

5.
采用高温固相法合成一系列不同摩尔分数Mn~(2+)掺杂的Ca_9Sr(PO_4)_6Cl_2荧光粉,并利用X射线粉末衍射及荧光光谱手段对所制备样品的结构及其发光特性进行表征,在波长为412nm蓝光激发下,Ca_9Sr(PO_4)_6Cl_2:Mn~(2+)荧光粉产生中心波长位于643nm的红光宽带发射,其色坐标为(0.68,0.32)。研究发现,Mn~(2+)掺杂摩尔分数为15%时获得的Ca_9Sr(PO_4)_6Cl_2:Mn~(2+)荧光粉表现出最佳发光特性。利用Van Uitert理论模型分析发光强度与掺杂浓度之间的关系,表明Ca_9Sr(PO_4)_6Cl_2:Mn~(2+)荧光粉中Mn~(2+)浓度猝灭的机制为电偶极-电偶极相互作用。新型Ca_9Sr(PO_4)_6Cl_2:Mn~(2+)荧光粉可望发展成一种具有良好应用前景的白光LED用红色荧光粉材料。  相似文献   

6.
共沉淀法合成CaMoO4:Eu3+0.18,B3+0.1红色荧光粉   总被引:1,自引:0,他引:1  
采用共沉淀法制备了Eu3+、B3+共掺杂的白光LED用CaMoO4红色荧光粉,研究了不同Eu3+和B3+掺杂量对样品发光性能的影响.利用XRD和PL分别对样品的结构和发光性能进行了表征,结果表明:900℃灼烧3 h后得到CaMoO4纯相;荧光发射强度随Eu3+掺杂量的增加先增大后减小,在Eu3+掺杂量为0.18(物质的量分数)时达到最大值;随着B3+掺杂量的增加,CaMoO4:Eu3+0.18,B3+x的荧光发射强度逐渐增强,当B3+的掺杂量超过0.1时,样品的颗粒发生严重团聚.  相似文献   

7.
采用固相反应法制备了Sr1-xBi2Ta2O9:xPr3+(SBT:xPr3+)和Sr1-xBi2Ta2O9:xEu3+(SBT:xEu3+)红色荧光粉材料。通过X射线衍射和扫描式电子显微镜图谱,分析和研究了在低掺杂浓度时,掺杂离子对SrBi2Ta2O9的晶体结构和形貌的影响。利用荧光光谱仪测试了SBT:xPr3+和SBT:xEu3+荧光粉的激发和发射光谱。当样品SBT:xPr3+采用449 nm激发时,其主发射峰位于616 nm和653 nm;样品SBT:xEu3+采用464 nm激发时,其主发射峰位于590 nm和616 nm。作为一种潜在的LED用红色荧光粉,其温度稳定性也是十分重要的性质之一。本文对样品SBT:0.02Pr3+和SBT:0.2Eu3+在50~300℃之间的温度稳定性进行了分析。  相似文献   

8.
采用共沉淀法制备了Eu3+、B3+共掺杂的白光LED用CaMoO4红色荧光粉,研究了不同Eu3+和B3+掺杂量对样品发光性能的影响。利用XRD和PL分别对样品的结构和发光性能进行了表征,结果表明:900°C灼烧3 h后得到CaMoO4纯相;荧光发射强度随Eu3+掺杂量的增加先增大后减小,在Eu3+掺杂量为0.18(物质的量分数)时达到最大值;随着B3+掺杂量的增加,CaMoO4:Eu03.+18,Bx3+的荧光发射强度逐渐增强,当B3+的掺杂量超过0.1时,样品的颗粒发生严重团聚。  相似文献   

9.
为了提高白光LED的显色指数,开发新型近紫外光激发的红色荧光粉,采用传统的高温固相法合成了一系列的(ASr)1.00-xPO_4:Eu_x~(3+)(A=Li,Na,K)红色荧光粉样品。XRD结果表明,样品分别含有LiSrPO_4(PDF#14-0202),NaSrPO_4(PDF#33-1282)和KSrPO_4(PDF#87-1854)的晶相。对比研究Li~+,Na~+和K~+对样品荧光发射光谱(PL)的离子增强效应可知,随着Eu~(3+)掺杂浓度的增加,Li~+和Na~+对样品R值(R=I2/I1,I2及I1分别为Eu~(3+)的~5D_0→~7F_2与~5D_0→~7F_1跃迁峰的强度)的增强效应也随之增强,而K~+则无此增强效应。3种碱金属离子中,Li~+的掺杂不仅使Eu~(3+)的发射光获得最大的强度,而且能够得到最大的R值(1.48)。3种类型荧光粉中Eu~(3+)的最佳掺杂浓度均为x=0.08,在最佳Eu~(3+)掺杂浓度下,样品(LiSr)0.92PO4:Eu_(0.08)~(3+)的色坐标为(0.63,0.37),其发射光最靠近纯红色,表明(LiSr)_(0.92)PO_4:Eu_(0.08)~(3+)荧光粉更适合作为近紫外—白光LED中的红光成分,具有巨大的应用价值。  相似文献   

10.
采用高温固相法制备了一系列Eu3+掺杂的Na2Ca3Si6O16红色荧光粉.用X射线粉末衍射仪表征了荧光粉Na2Ca3-xSi6O16:xEu3+的结构.研究显示,Eu3+的掺入并未使Na2Ca3Si6O16晶体产生杂相.采用荧光分光光度计分析了Na2Ca3-xSi6O16:xEu3+ 的光学性质. Na2Ca3-xSi6O16:xEu3+荧光粉发红光,其中以波长611 nm的发射峰强度最强. Eu3+的掺杂对Na2Ca3-xSi6O16:xEu3+荧光粉发射光谱的峰形和峰位置无明显影响,但发光强度与Eu3+的掺杂量(摩尔分数)有关,当Eu3+的掺杂量为0.08时,Na2Ca3-xSi6O16:xEu3+荧光粉的发光强度达到最大值,掺杂量继续增大时会发生浓度淬灭现象,这可能是由多电子偶极相互作用引起的.结果表明:Na2Ca2.92Si6O16:0.08Eu3+荧光粉是一种潜在的可用于白光LED的红色发光材料.  相似文献   

11.
氧化钇(Y2O3)、 氧化铕(Eu2O3)与三氧化钨(WO3)为原材料,通过调整Y2O3(Eu2O3)与WO3的摩尔比例,采用高温固相法制备钨酸钇体系红色荧光粉,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、光致发光(PL)等表征分析样品的晶相结构、形貌尺寸和光致发光性质。研究结果表明:当Y2O3与WO3的摩尔比例为1∶1和1∶3时,可分别合成纯相的Y2WO6:Eu3+红色荧光粉和Y2W3O12:Eu3+红色荧光粉;该系列红色荧光粉可被近紫外光和蓝光有效激发,发射峰值位于615 nm(Eu3+离子的5D0→7F2跃迁)的红光;Y2WO6:Eu3+红色荧光粉的相对发光强度明显优于Y2W3O12:Eu3+红色荧光粉;Y2WO6:Eu3+红色荧光粉Eu3+的最佳掺杂浓度(摩尔分数)为5%。  相似文献   

12.
以溶胶-凝胶法制备了掺Er3+的TiO2上转换发光纳米粉,通过XRD、SEM、上转换荧光发光谱等测试,对不同物质的量百分比Er3+掺杂和热处理温度的TiO2纳米粉进行了上转换性能研究,并对其发光机理进行了分析.结果表明,适量Er3+物质的量百分比及适当热处理温度有利于增强TiO2纳米粉的上转换发光性能.Er3+:TiO2粉体在980 nm激发下在539~567 nm范围获得绿光、在669 nm处获得红光.随着Er3+的物质的量百分比增加,绿光增强,红光减弱(小于1%);物质的量百分比继续增加,绿、红光均弱.随着焙烧温度的升高,绿光增强,红光减弱.当Er3+掺杂物质的量百分比为1%;焙烧温度为800℃时,获得的绿光强度较高、色彩单一.  相似文献   

13.
由于YAG:Ce3+荧光粉在白光发光二极管中的广泛应用,使其受到越来越多的关注.但是出于商业利益,其最佳配方和烧结工艺却是保密的.利用固相法,通过控制所掺杂Ce3+的浓度及调节烧结温度制备一系列YAG:Ce3+荧光粉.测试结果表明:当激发光波长为460 nm时,该荧光粉的发射波长为540 nm;最佳掺杂Ce3+的浓度及烧结温度分别为2%和1 400℃;此外,发射波长有红移的现象,此更符合现代固态照明对色度的需要.  相似文献   

14.
采用水热和烧结的方法制备系列Sr4 V2 O9:Eu3+(5%),Ba2+(x%)(x=0,5)粉末样品。用X射线衍射和荧光分光光度计对样品的结构和光学性质进行了研究。研究结果表明Ba掺杂能提高样品的发光强度,而烧结却降低发光强度。随着烧结温度的增加,Eu离子周围的晶格畸变,导致 Eu离子的磁偶极跳跃减弱并消失。  相似文献   

15.
采用高温固相法制备了Na+掺杂的荧光粉Li1-xNaxNbO3∶Pr3+. 在不改变晶体结构的条件下,掺杂Na+提高了荧光粉Li1-xNaxNbO3∶Pr3+蓝色光激发的发射强度,其最佳掺杂计量比x=0.05. 将荧光粉负载到铝合金板上,对金属板施加拉力时,LiNbO3∶Pr3+的光致发光强度随应力的增大发生骤增现象. 随着x的增加,骤增现象逐渐消失,因为Na+的掺杂改变了Pr3+周围的不对称性,影响了LiNbO3∶Pr3+的力诱导发光特性.  相似文献   

16.
白光LED用YAG:Ce3+荧光粉的增红   总被引:1,自引:0,他引:1  
目前白光LED在红光波段发射较弱,导致其显色指数偏低,本文在最常用的白光LED荧光粉Y3Al5O12:Ce3 (YAG:Ce3 )中掺入Gd3 、Pr3和Sm3 ,来增强红光波段的发射,从而提高显色指数.用X射线衍射仪(XRD)、分光光度计、光谱分析仪及荧光粉相对亮度测试仪对样品进行表征,研究了Gd3 、Pr3 和Sm3 对荧光粉性能的影响,并对其增红机理进行了初步的探讨.结果表明:Gd3 、Sm3 及Pr3 的加入都增强了光谱的红区发射,Gd3 使光谱发生红移;Sm3 则在光谱上增加了峰值分别位于566、600和616nm的三个弱发射峰;Pr3 在光谱的红区发射区叠加了一个峰值在610nm的尖锐发射峰;Gd3 、Sm3 及Pr3 的加入,使样品相对亮度及发光强度都下降了一定程度.  相似文献   

17.
采用固相法合成了系列掺硼SrAl2O4:Eu,Dy长余辉发光材料。通过测试分析合成粉体的物相组成、激发光谱、发射光谱和余辉时间,研究了硼掺杂对SrAl2O4:Eu,Dy长余辉发光材料合成温度与发光性能的影响。实验结果表明,添加硼一方面做为助熔剂可以降低合成温度,另一方面当硼摩尔分数小于30%时,增加硼含量可以延长余辉时间,但硼含量的变化对激发和发射光谱峰值没有明显影响。  相似文献   

18.
本文以硅酸盐相Sr2SiO4:Eu2+为前驱体,采用两步反应法制备了一系列单相的氮氧化物荧光粉Sr1?xSi2O2N2:Eu2+x(0.02?x?0.10),详细探讨了SrSi2O2N2:Eu2+荧光粉的反应机制及发光性能.实验结果显示所有样品能被近紫外光(400 nm)和蓝光(450 nm)激发发射出峰值位于535 nm的黄绿光,在Sr2SiO4:Eu2+体系中Eu2+的最佳掺杂浓度值x为0.05,Eu2+之间的能量传递是电偶极-偶极相互作用,Eu2+之间能量传递临界距离Rc=1.507 nm.此外,本文还对样品的发光强度和热稳定性与某商用YAG黄粉作了分析比较,所有结果表明该系列荧光粉可用于白光LED制造.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号