首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在没有使用∑n=0∞α_n(k_n~(-1))∞条件,并用更弱条件α_n→0(n→∞)和{T~ny_n}_n≥0有界分别取代∑n=0∞α_n~2∞和值域T(D)有界的条件下,在实Banach空间中建立了渐近伪压缩型映象不动点的带混合型误差的修改的Noor三步迭代序列的强收敛定理,从而改进和推广了有关文献中的相应结果.  相似文献   

2.
引入了C~*-代数A与B之间的广义-同态φ_n:A→B与φ:A→B在点α处的三种偏差:δ_n~(1) (α),δ_n~(2)(α)与δ_n~(3)(α),证明了若E■A且对任—x∈E,■δ_n~(i)(x)=0,则对任—x∈C~*(E)有■δ_n~(i)(x)=0,特别■φ_n(x)=φ(x),(i=2,3)。作为推论得到了古典逼近论的Korovkin定理。  相似文献   

3.
考虑α_1=2~(1/2),α_2=2~(1/2)~(α_1),…,α_(n+1)=2~(1/2)~(α_n),…。这个序列{α_n},容易证明是单调上升的有界序列,因而有极限,记为A。对α_(n+1)=2~(1/2)~(α_n),两边取极限,即有A=2~(1/2)~A,解得A=2。但一般地,如果序列的底数不是2~(1/2),而是x>0时,能否仍有收敛性呢?其极限是什么?下面谈谈这个问题。今讨论x>0时,α_1=x,α_(n+1)=x~(α_n),n=1,2,…,所成的序列{α_n}的极限问题。如果{α_n}收敛,并把这个极限记为A,即limα_n=A。因为α_(n+1)=x~(α_n),两边取极限得  相似文献   

4.
讨论了一般的广义Logistic映射:x'=rx(1-(x/K)~θ(θ>0).对系统不动点的稳定性进行了研究,指出了个系统是混沌的,接着讨论了具有随机扰动的广义Logistic映射logx_(n 1)-logx_n=a-bx_n~θ αε_n(其中ε_n为标准高斯白噪声).特别对θ=2的广义Logistic映射在α充分小的情形下,讨论了映射的动力学性质,并且从理论上证明了当α→0时,具有随机扰动的广义Logistic映射logx_(n 1)-logx_n=a-bx_n~θ αε_n趋于确定性的广义Logistic映射logx_(n 1)-logx_n=a-bx_n~θ.  相似文献   

5.
在条件D(υ_n,u_n),D′ (υ_n,u_n)下,本文将平稳序列的最大值与最小值的渐近独立性推广到有限个不相交区间上,得到定理 {ξ_n}为平稳序列,满足D(υ_n,u_n),D′(υ_n,u_n),u_n=x/a_x+b_x,υ_n=-y/c_n+d_n,a_n>0,c_n>0,J=(α_in,β_in,),i=1,2,…,s,0≤α_1<β_1≤α_2<β_2≤…≤α_n<β_n<∞.如果P(α_n(M_n-b_n)≤x,c_n(M_n-d_n)>-y)→G(x,y)  相似文献   

6.
0 引言给定区间[α,b)的一个分划Δ_n:α=x_0相似文献   

7.
设K是任意实Banach空间X的闭凸子集,且T:K→K是Lipschitz严格伪压缩映象,在没有假设∑_(n=0)~∞α_nβ_n<∞之下,本文证明了带误差的Ishikawa迭代序列强收敛到T的唯一不动点。另外,还给出了Ishikawa迭代序列的收敛率估计。所得结果统一,改进和发展了最新的一些结果。  相似文献   

8.
一、引言设给定函数,f(z)=sum from n=0 to ∞ c_nz~n (|z|<1),其中α_n是复数。我们使用下列符号: S_n=α_0+α_1……+α_n=S_n~(0) S_n~(p)(p>-1)定义如下: sum from n=0 to ∞ S_n~(p) x~n=1/(1-x)~(p+1) sum from n=0 to ∞α_n x~n —z平面上的闭凸集(闭凸域,直线,射线,线段,点) G_ε—包含G在其内的凸区域,且G_ε的边界点与G的距离ξ≤ε。 Cesaro(齐查罗)求和:如果=S,就说级数sum from n=0 to ∞α_n用p阶Cesaro方法[(c;p)—法]可求和,共和为S,记作sum from n=0 to ∞α_n S. 条件(A):如果函数,f(z)在|z|<1解析,在闭圆|z-x_0|≤1-x。(任意x_0,0≤x_0<1)连续,则称函数,f(z)满足条件(A)。条件(B):如果函数,f(z)在圆|z-x_0|<1-x_0有界,在点z=1有放射边界值: f(1)=f(z), 则称,f(z)满足条件(B)。  相似文献   

9.
Banach空间中关于一致Lipschitzian映象的一个新结果   总被引:1,自引:0,他引:1  
设E是一实Banach空间,K为E中的一非空闭凸子集,Ti:K→K,i=1,2,3为一致Lipschitzian连续映象.如果序列kn(∩)[1,∞),kn→1,{αn}、{βn}、{δn}∈[0,1],满足:(i)δn→1(n→∞);(ii)∑∞n=0αn=∞,∑∞n=0βn=∞;(iii)∑∞n=0α2n<∞,∑∞n=0αnβn<∞;(iv)∑∞n=0αn(kn-1)<∞,对x0∈K,让{xn}满足以下迭代序列xn+1=(1-αn)xn+αnT n1ynyn=(1-βn)xn+βnT n2znzn=(1-δn)xn+δnT n3xn,如果存在严格增的函数φ:[0,∞)→[0,∞),φ(0)=0,使得对(A)j(x+y)∈J(x+y),x∈K(i=1,2,3)有〈T nix-x*,j(x-x*)〉≤kn||x-x*||-(ψ)(||x-x*||),则{xn}收敛于x*.文章主要结果推广了张石生教授最近文献[1,8]以及文献[6-7]等的主要结果.  相似文献   

10.
本文研究了三点边值问题{u″-k2u+a(t)f(u)=0,t∈(0,1),u(0)=0,u(1)=αu(η)正解的存在性,其中a∈C([0,1],[0,∞)),η∈(0,1),α∈(0,sinh(k)/sinh(kη)),f∈C([0,∞),[0,∞)).主要结果的证明基于锥上的不动点定理.  相似文献   

11.
在Gamma-Gamma模式下串联结构系统可靠度估计   总被引:1,自引:0,他引:1  
设结构系统由n个结构性部件串联组成。设部件i的强度X_i~Γ(λ,ν),λ,ν>0,i=1,…,n;系统应力Y~Γ(μ,α),μ,α>0。X_1,…,X_n,Y相互独立。当ν,α已知,λ,μ未知时,本文给出串联结构系统可靠度R_n的MVUE_n、MLE_n和UMAU置信区间。本文还考虑了(?)_n与(?)_n的渐近关系,并证明了(?)_n和(?)_n都是R_n的相合渐近正态估计。本文的所有结果都可以推广到k/n(G)结构系统。  相似文献   

12.
设U_n是级数∑u_v的部分和,{λ_n}是一凸性数列,在[1],[2],[3],[4]和[5]中讨论了如下的问题:当数列{λ_n}满足怎样的条件时,级数∑λ_v u_v是|C,α|可和的?本文将进一步考虑这个问题.在本文所得的结果中,定理2,3和5是主要的.  相似文献   

13.
§1.导言设f(x)~1/2α_0+sum from n=1 to ∞(α_ncos nx++b_nsin nx),帕蒂于[1]中证明了: 定理A.设f(x)是一个周期2π的可积周期函数。{λ_n}是一个凸的数列,它满足∑n~(-1)λ_n<∞。则当x_0是f(x)的勒贝格点时,级数1/2α_0λ_0+sum from n=1 to ∞λ_n(α_ncos nx_0+b_nsin nx_0)是  相似文献   

14.
設L可积函数f(x)的富理埃級数是 (x)~α_0/2+sum from n=1 to ∞(α_n cos nx+b_n sin nx)=sum from n=0 to ∞(A_n(x))其导級数是sum from n=1 to ∞(n(b_n cos nx-α_n sin nx))=sum from n=1 to ∞(nB_n(x))。又設s_n=sum from k=0 to n(u_k),当  相似文献   

15.
设Oε_n是X_n上的保序且升序变换半群,对_n≥3,研究了半群Oε_n的极大幂等元生成子半群的结构,证明了半群Oε_n的极大子幂等元生成子半群S有且仅有两类:S=Oε_n\{∈}和S=I_(n-2)∪{∈}∪G_m(1≤m≤n-1),其中I_(n-2)={α∈Oε_n:|im(α)|≤n-2},G_m={α∈Oε_n:|im(α)|=n-1,mα=m},∈是集合X_n上的恒等变换.  相似文献   

16.
设 K是实 Banach空间 X中非空凸子集 ,T:K→K为 Lipschitzφ-半压缩算子 ,设 { an} ,{ bn} ,{ cn} ,{ a′n} ,{ b′n} ,{ c′n}为 [0 ,1 )中实数列且满足一定条件 ,{ μn}∞n=0 和 { νn}∞n=0 是 K中两任意有界序列 ,则带误差项的Ishikawa型迭代序列 { xn} ∞n=0 强收敛于 T的唯一不动点 ;一个相关结果处理含 φ-拟强增生算子的方程解的带误差项的 Ishikawa型迭代逼近 .  相似文献   

17.
本文研究了三阶周期边值共振问题{v'(t)=f(t,v(t)),t∈[0,T],v~(i)(0)-v~(i)(T)=0,i=0,1,2解的存在性,其中函数f:[0,T]×R→R连续且有界.当非线性项f满足适当条件时,本文发展了上下解方法并得到其解的存在性.主要结果的证明基于Lyapunov-Schmidt过程和解集连通理论.  相似文献   

18.
文中研究差分方程 xn=A1nxn-i1+A2nxn-i2+A3nxn-i3xn-i4/B1nxn-i1xn-i2+B2nxn-i2+B3nxn-i4,n=0,1,… 的全局渐近稳定性,其中{A1n}+∞n=0,{A2n}+∞n=0,{A3n}+∞n=0,{B1n}+∞n=0,{B2n}+∞n=0,{B3n}+∞n=0都是非负实数列i1,i2,i3,i4∈{1,2,…},α=max{i1,i2,i3,i4},初始值x-1,x-2,…x-α∈(0,∞),从而得到了该方程唯一正平衡解是全局渐近稳定的一个充分条件.  相似文献   

19.
Banach空间上广义渐近拟非扩张型映象不动点的逼近   总被引:7,自引:4,他引:3  
引入一类比渐近拟非扩张型映象更加广泛的广义渐近拟非扩张型映象,并给出具混合误差的Ishikawa迭代序列强收敛于广义渐近拟非扩张型映象的一个不动点的充要条件:设E是一Banach空间,T:E→E是广义渐近拟非扩张型映象,其渐近系数kn满足∑(kn-1)<∞;若T在F(T)中的点处一致连续,任取一点x0∈E,{xn}是由下式定义的具混合误差的Ishikawa迭代序列{xn 1=(1-αn)xn αnTnyn un, ,yn=(1-βn)xn βnTnxn vn,n≥0其中{αn}、{βn}是[0,1]中的两个数列且∞∑n=0αn收敛,{un}、{vn}是E中两个点列且{vn}有界同时∞En=0‖un‖收敛.则{xn}强收敛于T在E中一个不动点的充要条件是lim inf D(xn,F(T))=0.  相似文献   

20.
设?_n是n个文字的n!阶对称群,ρ=(1~(α_1)2~(α_2)…n~(α_n))是?_n的一类,亦即ρ的任一元素可分解为α_1个长度为1的循环节,α_2个长度为2的循环节,…,a_n个长度为n的循环节的乘积,而α_1 2α_2 … nα_n=n设(λ)=(λ_1,λ_2,…,λ_m)为n的一个划分,亦即非负整数λ_i≥0,满足λ_1≥λ_2≥…≥λ_m,使得λ_1 λ_2, … λ_m=n, m≥n.设x_ρ~((λ))为类ρ对应于划分(λ)的特征,我们熟知,如果记p(n)为n的所有可能的划分的个数,则?_n有p(n)类,p(n)个划分,于是恰好有p(n)~2个特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号