首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
本文讨论一类非齐次渗流型方程的初边值问题: a/(at)u-△β(u)+▽·G(u)=f_1(x,t)+f_2(x,t)|u|~μu, u|_(aΩ)=0,u(x,0)=u_0(x). 我们从非退缩方程的初边值问题着手,导出对解的估计的一个微分不等式,由此可以建立上述问题广义解的存在性和渐近性的结论。本文的工作是[3]的改进和推广。  相似文献   

2.
讨论了 Rn中有界域Ω上如下半线性抛物型方程未知源反问题ut- L u =φ(x,t) s(u) γ(x,t) ,  (x,t)∈Ω× (0 ,T) ,u(x,0 ) =u0 ,  x∈Ω , u n| Ω× (0 ,T) =g(x,t) ,u(x0 ,t) =f (t) ,  0 相似文献   

3.
本文对抛物型偏微分方程的初边值问题:-u/t+ε(u/x~2)+a(x,t)u/x-b9(x,t)u=f(x,t),0相似文献   

4.
证明了对一类快速扩做方程(|u(x,t)|~(n-1)·u),-△u+c(x,t)·u=0的第三非线性初-边俘问题的古典解满足积分型极值原理,并由此推出如果全局解不存在,那么解必在区域边界上Blow up。  相似文献   

5.
考虑具有无穷时滞泛函微分方程d2xdt2=a(t,x(t))x(t)+p(t,xt)+ddt∫0-∞q(s,x(t+s))ds.利用重合度理论,得到方程存在ω-周期解的一个充分条件为:p有界,β0>0,且(β1ω+q)ω<1,其中q=∫0-∞sup|u|<∞| q(s,u) u|ds,β0=inf(t,x)∈R2|a(t,x)|,β1=sup(t,x)∈R2|a(t,x)|.特别地,当a(t,x)≡a(t),q(s,u)≡0时,得到方程存在唯一ω-周期解的一个充分条件为:p有界,β0>0,β1ω2<1且(p(t,φ1)-p(t,φ2))(φ1(0)-φ2(0))≥0,(t,φ1),(t,φ2)∈R×BCh,其中β0=inft∈Ra(t),β1=supt∈Ra(t).  相似文献   

6.
利用临界点理论中的山路引理,证明了一类Ricatti方程u"(t)-a(t)u(t)+b(t)u(t)2=0存在非平凡的同宿轨道,其中a(t)≥a0>0,0≤b(t)≤b0,但b(·)≠0.  相似文献   

7.
本文利用Galerkin方法和解的先验估计,研究了一类更广泛的Korteweg-de Vries方程的初边值问题。 u_t+f(u)_x-αu_(xx)+u_(xxx)=0 (x,t)∈R~+×[0,T] u(x,t)|_(t=0)=u_0(x) x∈R~+ u(x,t)|_(x=0)=0 u(x,t)→0 (x→∞)及 u_t+f(u)_x-u_(xxx)=0 u(x,t)|_(t=0)=u_0(x) x∈R~+ u(x,t)|_(x=0)=u_x(x,t)|x=0=0 u(x,t)→0,(x→∞)弱解的存在性,在适当的条件下,还可以得到古典解的存在性。  相似文献   

8.
讨论一类发展的p(x)-Laplace方程ut=div(a(x,t)∣△u∣p(x)-2△u)+f(u,x,t)解的存在唯一性。不同于此前的研究,文中假设a(x,t)≥0,且当x∈Ω时,a(x,t)>0,解的稳定性是建立在一个合理的部分边界条件u(x,t)=0,(x,t)∈Σ1上,其中Σ1 Ω(0,T)仅仅是一个子流形。  相似文献   

9.
研究时滞Li啨nard方程¨x+f1(x)·x+f2(x(t-τ))·x(t-τ)+g(x(t-τ))=e(t)的解的有界性,其中f1,f2均连续可微,g(t)可微,e(t)为连续函数,当f2=0时,上方程就化为文献[9]中研究的方程¨x+f(x)·x+g(x(t-τ))=e(t).结果推广了文献[9]中的结论.  相似文献   

10.
研究了高阶摄动波动方程 ttu+ (-Δ) mu+V(x)u =0 ,u(x ,0 ) =0 , tu(x ,0 ) =f(x) ,x ∈Rn,n >3m ,解的Lp -Lp′ 估计 在摄动和始值 f(x)为紧支且V(x)充分小的假定下 ,得到了该问题解的Lp-Lp′ 估计 :‖u(· ,t)‖p′ ≤Ct-d‖f‖p,t >0 ,其中m >1,d =n/m (1/p- 1/p′) - 1,1/p+ 1/p′=1,m /(2n) <1/p- 1/2 相似文献   

11.
本文证明了 Burgers-BBM 方程 Cauchy 问题■u_t+udivu-β△u-δ△u_t=f(u,▽u)■|t=0=Φ(x),Φ(x)∈Ⅱ~s(p~■)(s>n/2+1)在 C([0,∞):Ⅱ~s(R~■)(s>n/2+1)中解的存在唯一性,并证明了解在‖·‖_■范数意义下在[0,T]上的稳定性.  相似文献   

12.
给出了求解中立型时滞抛物方程初边值问题t[u(x ,t) -λu(x ,t-τ) ] =2x2 u(x ,t) +f(x ,t) ,    (x ,t)∈ ( 0 ,l)× ( 0 ,T]u(x ,t) =φ(x ,t) ,    (x ,t)∈ ( 0 ,l)× [-τ ,0 ]u( 0 ,t) =u(l ,t) =0 ,   t∈ [-τ,T]的差分方法 ,并获得了该差分格式的收敛性  相似文献   

13.
本文证明下述Diri。hlet问题:{Di(a ij(x,u)Diu)+f(:‘)=o在房内在口g内的解必须满足积分恒等式:72:!_:(·)、X+挚:{_·,(·)‘一告{!一‘X二,·‘,‘X,·,D,·D,·ds 一各才~一二才“甘口g{_(x*D;·“)。、:鸟:dx口口’-1一2 十并应用它来证明关于星形域甜的边值问题:“、,D‘(a‘j(xu)D,:‘)+up+又u=ou>0’扮=O在甜内在g内在口幼内(2)(3)当“(号,:,“,)甘寸无解·1.积分恒等式的建立首先考虑散度形拟线性方程的边值问题:d iv万(x,。,Du)+f(u)二o在‘刁IAJ。=。/在日。内4)这里又(x,。,D:‘)=(A(x,u,D。),…月。(x,。,D公)).gcR”…  相似文献   

14.
本文研究下列非线性 Schr dinger 方程 i( u)/( t)-△u+K|u|~pu=0 [0.∞)×Ω u(0,x)=u_0(x) Ω (1) u(t,x)| =0 (0,∞)×Ω其中Ω是 R~R 中区域.众所周知.方程(1)的解的整体解存在与否取决于 p.n.Ω及 u_0.在文献[1]中 Y.Tsutsumi 研究了当 n≥3.p 为偶数时,在小初值情形下方程(1)的外问题整  相似文献   

15.
设R~n为n维空间,f(t,x,u)是R~+×R~(n+1)上的实连续函数。本文讨论 u_u-△u+λu_1+μu=f(t,x,u),λ,u>0 (1) u(0,x)=u_0(x),u_1(0,x)=u_1(x).x∈R~n (2)的整体解的存在性与唯一性。定义x_s及|||·|||_s为下列空间及其相应的范数  相似文献   

16.
证明抛物型 Monge-Ampère方程第一初边值问题 -utdet uxx=f于 Q=Ω× ( 0 ,T] ,u=φ于 p Q广义解的存在惟一性 ,这里 Ω为Rn中的有界凸集 ,f 非负有界可测 ,φ( x,t) =ψ( x) A( t) x B( t) ,其中ψ( x)∈ C(Ω)凸 , x0 ∈ Ω ,φ( x0 ,t)∈ Cα( [0 ,T] )且关于 t∈ [0 ,T]单调递减  相似文献   

17.
本文研究了下列多维拟线性蜕化抛物型方程的第一边值问题广义解的存在唯一性a(u)=△u+b(u)·▽u,u~Σ=Ψ(s,t),u~t=0~(=u_0(x),)这里a(s)、b(s)、φ(s,t)、u_0(x)有界可测。  相似文献   

18.
考虑二阶线性常微分方程的两点边值问题: Lu=f(x),a≤x≤b (1) (I){ a_1u′(a)+a_2u(a)=α,b_1u′(b)+b_2u(b)=β (2) (a_1~2+a_2~2≠0,b_1~2+b_2~2≠0)不失一般性,算子L可看作 Lu=u″(x)-q(x)u(x) (3) 众所周知,方程(1)的通解具有如下迭加结构: u(x)=c_1u_1(x)+c_2u_2(x)+u_f(x) (4)其中u_1,u_2为对应(1)的齐次方程  相似文献   

19.
通过Mittag-Leffler矩阵函数构造的能观性Gram矩阵和Cayley-Hamilton定理获得了一类带Caputo导数、具有分布型时滞的分数阶控制系统cDαx(t)=Ax(t)+integral from n=-h to 0(dxB(t,x)u(t+x)),t∈J:=J/{t1,t2,…tk},J:=[0,T],y(t)=Cx(t)+Du(t),x(0)=x0, 具有能观性的2个充要条件:1)系统在[0,t f]上,存在时刻tf>0,使Gram矩阵W0[0,tf]=integral from n=0 to tf(Eα(AT tα)CTCEα(A tα)dt)非奇异;2)若系统的能观性判别矩阵为Q0{C CA … CA(n-1)},则rankQ0=rank{C CA … CA(n-1)}=n时,系统是能观的.  相似文献   

20.
考察了如下广义BBM Burgres方程ut+f(u) x =uxx+uxxt,u|t =0 =uo(x)→u±,x→∞ . ( 1)稀疏波解的稳定性 ,即在u-0 ,的解 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号