首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正> 目前,工科院校普遍采用同济大学数学教研室主编的《概率论》(高等教育出版社,1991年2月第16次印刷)一书作为教材,但该书第26页存在一个概念性错误,易给读者造成概念上的混乱,应当予以重视。本文提出如下商榷。《概率论》第26页,第14行:“(3)对于两两互斥的有限个随机事件A_1,A_2,…,A_n,有P(A_1+A_2+…+A_n)=P(A_1)+P(A_2)+…+P(A_n).这是由于A_1,A_2,…,A_n两两互斥,所以A,A_1,A_2,…,A_n的频率r/n,(r_1)/n,(r_2)/n,…(r_n)/n  相似文献   

2.
<正> 引言 众所周知,人们常用概率论的思维方法证明分析中的组合恒等式,所用的方法是构造完备事件组:A_1,A_2,…,A_n,A_i∩A_j=φ,i≠j,i,j=1,2,…,n,且 A_i=Ω(Ω是必然事件,φ是不可能事  相似文献   

3.
设A_J∈L(V),i=1,…,m,A_1=A_1…A_m为A_1,…A_m的张量积,称D(A_1,…,A_m)=A_1I…I+IA_2I…I+…+I…IA_m为■A_i的一阶偏导算子,它的正交数值域为(D(A_1,…,A_m))={sum from i=1 to m(A_jv_j,v_j)|(v_i,v_j)=δ_(ij),i,j=1,…,m}(要求m=≤n=dimV)。本文给出了(D(A_1,…,A_m))=0,(D(A_1,…,A+m))R及D(A_1,…A_m)为厄米特算子的充要条件。  相似文献   

4.
在这篇短文中,我们得到了两个结果,其中第一个结果把Chung的结果推广到事件不独立的情形。设{A_n}_(n=1)~∞是事件列。记I_n=I_(A_n)是事件A_n的示性函数,J_k=I_1+…+I_k,δ_(mn)=P(A_n)P(A_n)-P(A_nA_m)=E(I_n)E(I_m)-E(I_nI_m),其中E(I_n)是I_n的数学期望,我们有:  相似文献   

5.
这里x=col.(x_1,x_2,…,x_n),A(t)是t的一致概周期(一致Π.Π.)n阶方阵,f(t)是t的一致Π.Π.n维列向量函数,‖x‖=sum from i=1 to n |x_i|,A(t)=(α_(ij)(t)),‖A(t)‖=sum from i+j=1 to n|α(ij)(t)|或欧氏模。 从文[1]知,对于周期线性系统情形:A(t+T)=A(t),f(t+T)=f(t),T>0,系统(1)有T-周  相似文献   

6.
§1 前言记p_(ij)=p_(ij)(1)。设P=(p_(ij)是一个k×k矩阵,如果p_(ij)≥0 (i,j=1,…,k)且[sum from j=1 to n p_(ij)=1] (i=1,…,k), (0)则称P为随机矩阵。显然,若P_1,P_2是随机矩阵,则P_1P_2也是随机矩阵。特别地,若P是随机矩阵,则P~n=P(n)=[p_(ij)(n)]也是随机矩阵(n=1,2,…)。如果对一切i,j而言,存在着不依赖于i的极限lim P_(ij)(n)=P_j,则称P具有遍历性。有穷齐次  相似文献   

7.
设P是一个域,Γn是满足{αEij|i,j=1,2,…,n,α∈P} (P)的一个乘法半群,其中Mn(P)定义P上所有n×n矩阵组成的乘法半群.证明了一个结果:若f:Γn→Mn(P)是一个保零矩阵的乘法映射,Fij(i,j=1,2,…,n)是Mn(P)中n2个矩阵,且满足FijFkl=δjkFil(i,j,k,l=1,2,…,n),则存在可逆阵S∈Mn(P),使得f(Fij)=S-1FijS,i,j=1,2,…,n.由此刻画了Γn的保迹反乘法映射.  相似文献   

8.
In this paper, the Dirichlet boundary value problems for the 2n order nonlinear elliptic systems of sev-eral complex equations are considered,where z = x+iy, U = (U_1(z),...,U_n(z))', Q~j = (Q m)n×n,A~(jk)= (A _m~k)n×n, A= (A_1,...,A_n)', Q _m=Q _m(z,U,U_2,...,U_(z~n z~(n-1)).U_(z~(2n))…U_(z~(n+1)) ~(n+1),A _m~k =A _ ~k(z,U,U_2z,...,U_z~n ~(n-1)),A_m=A_m(z,U,U_z,...,U_z~n ~(n-1)),j,k≥0,j+k≤2n-1, l,m=.1,2,...,n,T~j(z)=(T (z),...,T~j(z))′D={|z|<1}, ={{|z| =1}is the boundary of D , γis the outer normal vector of . Suppse that (1) , (2) satisfy the condition C in D :(i) For arbitrary vector of real value functions with 2n - 1 order continuous partial derivative: U(z)  相似文献   

9.
Ⅰ.引言§1.在這篇文章里,我們將引用下符號: AB=AB(x,y)=integral from n=a to b A(x,s)B(s,y)ds, (?)=(?)=integral from n=a to b A(x,s)B(y,s)ds, (?)=(?)=integral from n=a to bA(s,x)B(s,y)ds, (f,g)=integral from n=a to bf(x)g(x)dx,‖f‖~2=(f,f), Kψ(x)=integral from n=a to b K(y,x)ψ(y)dy。在(?)及(?)中,我們稱A為左因子,B為右因子抑^(?)及(?)是由於“A右乘以B”或“B左乘以A”得來的。此外,記(?)是一個(x,y)的函數,這個函數合有n個因子A_1(x,y),A_2(x,y),…,A_n(x,y),且認為它是由於從左至右逐次將前面運算所得的左因子右乘以緊接着後面的右因子經過(n-1)次運算得來的?(?)是由於以(?)为左因子右乘以右因子A_3(x,y)得來的。(?)是由於以(?)為左因子右乘以右因子A_4(x,y)得來的。依此類推,則A_1A_2A_3…A_(n-1)A_n(x,y)是由於以A_1A_2…A_(n-1)(x,y)為左因  相似文献   

10.
本文继续[5]的讨论,分别给出了当作用群为对称群S_n及交错群A时的相应公式为 sum from n=F∈Б(S_n) N(F)W(F)=(y_1+y_2+…+y_m)及 sum from n=F∈Б(A_n) N(F)W(F)=(y_1+y_2+…+y_m)其中N(F)=n1/2当W(F)=y_(il)…y_(in)(y_(ij)≠y_(it),j≠t)  相似文献   

11.
用两种方法计算了下列行列式:F_(z)=(?)其中(?)为正定阵。这行列式来源自平稳随机序列的相关函数。在计算过程中还证明了一个有趣的行列式等式:任给矩阵 A=(a_(ij))_(i,i=1,…,n 和两个列向量 b1=(?)及 b_2=(?)以 A_(i,0) 记把矩阵 A 的第 i 列换成 b_1所得之矩阵,以 A_(0,j)记把矩阵 A 的第 j 列换成 b_2所得之矩阵,以 A_(i,j)(i≠j)记把矩阵 A 的第 i 列及第 j 列分别换成 b_1及 b_2所得之矩阵,则(i≠j)|A||A_(i,j)|=|A_(i,0) ||A_(0,j)|-|A_(j,0) ||A_(0,i)|  相似文献   

12.
本文证明了定理 设F是一个特征为P的含P~a个元的有限域.f(x)=f_1(x)~l1…f_k(x)~lk是f(x)在多项式环F[x]中的标准分解式,f_i(x)是最高系数为1、次数为n_i的不可约多项式.那么f(x)有原根的充分必要条件为当p≥3时:k=1同时l_1=1,α及n_1为自然数或k=1同时l_1=2,α=n_1=1;当P=2,k=1时:l_1=1,α及n_1为自然数或l_1=2,α=n_1=1或l_1=3,α=n_1=1;当P=2,k>1时:α=1以及下面五种情形之一:一、f(x)=x~2f_1(x)…f_(k-1),这里(x,f_i(x))=1,(n_i,n_j)=1,i≠j;二、f(x)=(x+1)~2f_1(x)…f_(k-1)(x),这里(x+1,f_i(x))=1,(n_i,n_j)=1,i≠j;三、f(x)=x~3f_1(x)…f_(k-1)(x),这里(x,f_i(x))=1,(n_i,n_j)=1,i≠j;四、f(x)=(x+1)~3f_1(x)…f_(k-1)(x),这里(x+1,f_i(x))=1,(n_i,n_j)=1,i≠j;五、f(x)=f_1(x)…f_k(x),这里(n_i,n_j)=1,i≠j;  相似文献   

13.
对给定n+1维欧氏空间R~(n+1)中的m个点x_1=(x_(11),x_(12),…,x_(1n+1)), x_2=(x_(21),x_(22),…,x_(2,n+1)),…,x_m=(x_(m1),x_(m2),…,x_(mn+1)),证明了存在最优超平面β_0+β_1x_1+…+β_(n+1)x_(n+1)=0,使这组点到此超平面的加权垂直距离和Q(β)=(∑~(n+1)_(j=1)β~2_j)~(-1/2)∑~m_(i=1)w_i|β_0+∑~(n+1)_(j=1)β_jx_(ij)|=min (w_i>0,i=1,2,…,m);提出并证明了最优超平面β_0+β_1x_1+…+β_(n+1)x_(n+1)=0应满足的3个必要条件,从而给出了求最优超平面的方法.  相似文献   

14.
研究了Hilbert空间H上正则射影对的性质和结构,证明了两个正交射影P1,P2是可交换的(i.e.,P1P2= P2P1)两个等价刻画:(a)对某些p,q≥2及i,j=1,2,P(p;i)=P(q;j)成立;(b)对每一个p,q≥2及i,j=1,2,P(p;i) =P(q;j)成立.  相似文献   

15.
研究了微分方程f~(k)+A_(k-1)f~(k-1)+…A_2f″+A_1e~(az~n)f′+A_0e~(bz~n)f=F解的增长性,其中A0(z)、A1(z)、F(z)是级小于n的整函数,A j(z)(j=2,3,…,k 1)是次数不超过m的多项式,a、b为非零复常数.证明了该方程的所有解f(z)满足(f)=λ(f)=σ(f)=∞,2(f)=λ2(f)=σ2(f)=n,至多除去2个例外复数b.  相似文献   

16.
本文对高维纽结的Alexander不变量作了一些研究,给出如下结果。定理1 A(t)是任一Laurent多项式,A(1)=±l,对任意自然数n≥2,自然数p、q,使得p+q=n+1,则存在一个n维纽结KS~(n+2),它的Alexander不变量为 (1)p≠q,H_p(z)=∧/A(t),H_q(z)=∧/A(t~(-1)); (2)p=q,H_p(z)=H_p(z)=∧/A(t)∧/A(t~(-1)),其中z是z=S~(n+2)-K的无限循环复盖。定理2 如果A_1(t)……A_m(t)是Laurent多项式,且Ai(1)=±1(i=1…m),对任意自然数n和p+q=n+1,存在纽结K cS~(N+2)使得它的Alexander不变量为:  相似文献   

17.
算链论原理     
本文所提出的“算链论原理”,是关于传统算式sum from i=k to m A_j,(?)A_j,(?)A_j,(?)A_j,…的共同形式、性质与方法的推广型原理。它不仅为这些传统算式提供了共同的代数表达式(?)A_j((?)f[x+(j+h)r])、(?)f(u)或N_r~mf(u),而且还使这些传统算式摆脱了只有当它们的上下标m,k=0,1,2…,∞,且m≥k时才有运算的局限性。例如,它能使我们在一定条件下更深刻的认识到当k,m,n,h∈Z时,sum from j=1 to m f(j)-sum from j=1 to (m+n) f(j-n)=sum from j=1 to (-m) f(j),sum from j=k to m f(j+h)=-sum from j=h+1 to k+h-m-1 f(j+m),1÷(?)f(j)=(?)f(j),(?)f(j)=1÷(?)f(j+m-k+1),…,建立了一个广阔的可使阶为m-k+1∈Z的(?)A_f的运算领域。  相似文献   

18.
在[1]中,作者讨论了L_p[0,2π](1≤p≤∞)中函数用它的富里埃级数典型平均的逼近问题,并讨论了一些局部逼近定理。本文用[1]中一些结果讨论一些三角级数和奇异积分。设f(x)~sum from n=0 to A_n(x),其中A_0(x)=a_0/2,A_n(x)=a_ncosnx+b_nsinnx,B_n(x)=b_ncosnx  相似文献   

19.
讨论具有Siegel盘且次数m2的多项式P(z),构造函数列Q_n=P(z)+A_m(n)z~m+A_(m-1)(n)z~(m-1)+…+A_2(n)z~2,其中A_i(n)(i=2,3,…,m-1)不全为0,使得Q_n收敛于P.而且,对每个n,Q_n在原点的Siegel盘都包含原点的某固定邻域.  相似文献   

20.
§1 引言〔1〕中讨论了具有给定边际分布的概率测度的存在性。它的一种情形是基本空间Y 为有限序集。为确定起见,不妨设Y={1,2,…,n}并具有通常的序:P(Y)表Y 上概率测度之集。μ∈P(Y)。其密度记为{μ_i,i∈Y,},其中μ_i≥0,i=1,…,,n(?)μ_i=1。关于具有给定边际分布的概率测度的一个著名命题是(1.1)命题设μ,v∈P(Y),则存在Y×Y 上的概率测度γ满足(1.2) (i)(?)γ_(ij)=μ_i,i=1,…,n;(ii)(?)γ_(ij)=v_i,j=1,…,n;(iii)(?)i相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号