首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
对挤压后的AZ31镁合金件进行时效处理。时效温度为200-300℃,时效时间为15min-3h。研究了不同时效温度、时间对AZ31镁合金微观组织、力学性能的影响。结果表明:合适的时效工艺可使挤压变形后的试样组织达到平衡状态,材料塑性有较大幅度提高,而强度并没有显著降低。对于AZ31镁合金,最佳的时效工艺为275℃保温0.5 h。  相似文献   

2.
对采用等径角挤压(ECAE)工艺前后AZ31镁合金板材的性能参数和冲压成形性能进行了研究.结果表明,经过等径角挤压工艺处理后镁合金板材的应变硬化指数n值、各向异性r值和极限拉深比LDR值均得到了优化,从而改善了镁合金板材的冲压性能.  相似文献   

3.
镁合金板材温热冲压成形热力耦合数值模拟   总被引:1,自引:0,他引:1  
采用Gleeble3500热模拟试验机进行单向拉伸试验,获取了材料的力学性能参数,分析了AZ31镁合金板材的力学性能特点.采用热力耦合技术对镁合金板材温热冲压过程中的温度场进行了数值模拟,研究了冲压过程中温度场的分布规律,并对差温拉延工艺进行了分析.结果表明:差温拉延工艺可以提高镁合金板材的温热成形性能;采用热力耦合技术的数值模拟更能反映AZ31镁合金板材的温度敏感特性.  相似文献   

4.
挤压变形对AZ31镁合金组织和性能的影响   总被引:35,自引:0,他引:35  
采用500T挤压机试验研究了挤压变形对AZ31镁合金组织和性能的影响。结果表明,挤压变形AZ31镁合金组织以绝热剪切条纹和细小的α再结晶等轴晶为基本特征。挤压变形可显著地细化镁合金晶粒并提高镁合金的力学性能。随挤压比的增大,晶粒细化程度增加,晶粒尺寸由铸态的d400μm减小到挤压态的d12μm(min);强度、硬度随挤压比的增大而增大,延伸率在挤压比大于16时呈单调减的趋势。  相似文献   

5.
为减小AZ61A镁合金圆管成型的生产成本,采用田口法对AZ61A镁合金圆管成型热挤压实验进行了工艺参数优化。以挤压载荷最小为评价标准,分析了材料加热温度、主缸末速度、主缸初速度、润滑剂对挤压载荷的影响。基于工艺参数对挤压载荷的信噪比,获得了最优工艺参数组合。结果表明,材料加热温度对挤压载荷的影响最大,其次是主缸末速度。优化后的工艺参数组合为:材料加热温度400℃、主缸初速度为2mm/s、主缸末速度0.5mm/s、润滑剂为氮化硼。  相似文献   

6.
AZ31镁合金的研究进展   总被引:4,自引:1,他引:4  
综述了AZ31镁合金基本特征,讨论了主要合金元素对AZ31镁合金组织和性能的影响、AZ31镁合金的力学性能以及AZ31镁合金的晶粒细化、超塑性的研究现状,对AZ31镁合金的发展前景进行分析,指出应加强其成形技术、镁基复合材料和AZ31镁合金基础理论的研究.  相似文献   

7.
采用AZ31镁合金铸锭在实验室立式等径双辊铸轧机上进行铸轧试验;对铸轧带坯直接进行冷轧和冷轧后退火处理.研究了AZ31镁合金薄带立式双辊铸轧工艺及铸轧带坯进行冷轧、轧后退火过程的组织演变行为.采用合理的工艺参数,成功铸轧出镁合金薄带,同时由于双辊铸轧快速冷却和压力下凝固成形技术特点,改善了镁合金的凝固组织.对铸轧镁合金带坯直接进行冷轧,最大变形量可以达到40.7%.经过冷轧后的镁合金板材,在350℃下退火30~60 min,可以获得平均晶粒直径为9~10μm的等轴晶细晶组织.  相似文献   

8.
用交流钨极氩弧焊(TIG)对7mm厚AZ31镁合金板材进行了焊接试验;对焊接接头进行了深冷处理试验,深冷处理温度为-160℃,保温时间分别为4、8和12h;对深冷处理前后的AZ31镁合金焊接接头进行了拉伸试验,测试了AZ31镁合金TIG焊接接头的强度;用扫描电镜SEM观测了拉伸试件断口形貌;测试了AZ31镁合金TIG焊接接头的硬度分布。试验结果表明,在深冷处理温度为-160℃、保温时间为8h的情况下,深冷处理后镁合金焊接接头的各项力学性能均达到了最佳状态。  相似文献   

9.
采用横向梯度挤压(TGE)和传统挤压(CE)工艺制备Mg–3Al–1Zn(AZ31)镁合金板材,系统地研究了镁合金在挤压工艺中流变和动态再结晶行为,并对挤压AZ31镁合金板材的微观组织、织构和力学性能进行了分析。结果表明,由于在横向梯度挤压工艺中引入了沿板材横向额外流速和沿挤压方向流速差,板材具有细小晶粒的微观组织和多种类型的织构。板材横向从边缘到中心基极逐渐偏离法线方向,在板材中心区域达到最大倾角65°。此外,除了横向梯度挤压板材中心区域外,板材基极沿挤压方向向横向偏转40°–63°。与传统挤压板材相比,横向梯度挤压板材具有高的延展性和应变硬化指数(n值),低的屈服强度和Lankford值(r值)。由于横向梯度挤压板材在变形过程中基面滑移和拉伸孪晶容易被激活,板材延伸率最高可达41%,屈服强度低至86.5 MPa。  相似文献   

10.
两步等通道角挤压AZ31镁合金的微观组织和力学性能   总被引:4,自引:0,他引:4  
对AZ31镁合金经等通道角挤压(ECAE)变形后的微观组织和力学性能进行了研究.结果表明:在498-523K温度范围内变形后,合金晶粒随着变形程度增加明显细化,延伸率提高,但屈服强度降低;随着变形温度降低,变形后合金的延伸率下降,而屈服强度有所提高.基于以上两点规律提出了两步ECAE工艺,在两步ECAE变形过程中,AZ31合金的变形温度可以降低至453K,经两步ECAE变形后,获得亚微米级的亚结构AZ31镁合金的强韧性随之得到明显的改善.  相似文献   

11.
镁合金板材温热成形性能   总被引:5,自引:0,他引:5  
通过热模拟单拉试验,获得了AZ31镁合金板材在不同工艺条件下的真实应力应变曲线,分析了温度和应变速率对流变应力的影响.通过极限拉伸比试验,研究了轧制、退火、拉伸温度、拉伸速度、拉延间隙以及压边力等工艺因素对镁合金板材成形性能的影响.结果表明:交叉轧制和退火工艺能够显著提高镁合金板材的力学性能;在极限拉伸温度150℃、极限拉伸速度15 mm/s的工艺条件下,极限拉伸比能够达到3.0;AZ31镁合金板材适宜的拉延间隙为板厚的1.2倍.  相似文献   

12.
采用金相分析、拉伸实验、动态机械热分析等方法,研究了均匀化和未均匀化的AZ61镁合金在一次挤压态、二次挤压态及锻造态下的显微组织、力学性能和阻尼性能.结果表明:AZ61镁合金经3种塑性加工工艺后不同变形态之间的力学性能差别不大,但阻尼性能发生了显著变化;当应变振幅为5×10-3时,锻造态AZ61镁合金的阻尼性能相对于二次挤压态提高了5倍多.加工工艺对AZ61镁合金阻尼性能的影响规律可由Granato-Lucke理论得到很好的解释.  相似文献   

13.
挤压态AZ31D镁合金化学镀镍工艺及镀层性能研究   总被引:2,自引:1,他引:2  
研究了在挤压态AZ31D镁合金上化学镀镍的工艺及镀层性能.结果表明,在碱式碳酸镍体系中AZ31D镁合金表面可沉积化学镀镍层,所得Ni-P镀层均匀致密,无明显缺陷.X射线衍射分析结果表明,镀层为非晶态结构.动电位极化曲线测试结果表明,镀层的自腐蚀电位接近-0 4V(SCE),有明显的钝化区,耐腐蚀性能优异.锉刀实验表明镀层与基体金属结合良好,对镁合金具有理想的防护作用.  相似文献   

14.
凸凹模间隙是板料成形过程中的一个重要参数,其设计合理与否将直接影响成形产品的质量及模具寿命等,对镁合金板料而言也是如此.通过多次工艺实验,研究了模具单边间隙对AZ31B交叉轧制镁合金板料成形性能的影响,结果表明:针对0.8 mm厚的AZ31B板料,其最佳单边间隙为1.05~1.10t.  相似文献   

15.
不同路径等通道转角挤压镁合金的结构与力学性能   总被引:17,自引:0,他引:17  
为了研究等通道转角挤压时不同工艺路径对镁合金微观结构及性能的影响 ,采用模角φ =12 0°的模具 ,以A ,BA,BC,C四种工艺路径对AZ31镁合金进行了等通道转角挤压 ,分析测试了室温下挤压试样的微观结构及性能 .结果表明 ,相比于A ,BA,C路径挤压 ,BC 路径挤压容易实现较多的挤压道次和变形量 ;多道次挤压后 ,镁合金的晶粒得到显著细化 ,力学性能也显著改善 ,但不同路径的影响不同 .当挤压 12道次时 ,BC,BA 路径挤压试样的屈服强度显著下降 ,延伸率大幅度提高 ;A ,C路径挤压试样的屈服强度变化较小 ,延伸率的提高幅度也小 .  相似文献   

16.
AZ31镁合金薄板热拉深工艺研究   总被引:5,自引:1,他引:4  
主要研究了镁合金热拉深工艺过程中,各工艺参数包括拉深温度、压边间隙、润滑条件、拉深速度等对镁合金拉深成形性能的影响.结果表明:在200-275℃间,板厚为1mm的AZ31镁合金薄板具有较佳的热拉深成形性能,可得到最大极限拉深比为2.14杯形拉深件,极限拉深比的大小随上述工艺参数的变化而变化.  相似文献   

17.
变形镁合金高温变形流变应力分析   总被引:23,自引:0,他引:23       下载免费PDF全文
AZ31B镁合金是应用最广泛的变形镁合金,研究它在高温下的流变应力对热加工过程有很大的实际意义。采用实验法研究了AZ31B镁合金高温高应变速率压缩时流变应力,结果表明镁合金在573-723K、应变速率为0.01-5s^-1进行高温压缩的情况下,变形温度和应变速率对流变应力有显著的影响,流变应力随应变速率的升高和变形温度的降低而升高,其稳态流变应力同Zener-Hollomon参数的对数之间呈线性关系。引入Zener-Hollomon参数的指数形式正确描述AZ31B镁合金热压缩变形时流变应力同变形温度和应变速率之间的关系。  相似文献   

18.
开发了适用于镁合金圆棒试样的在线腐蚀疲劳系统,通过在空气和磷酸盐缓冲液(PBS)中分别进行循环疲劳试验,研究了腐蚀环境对AZ31B棘轮和低周疲劳性能的影响.结果表明:在棘轮应变演化的3个阶段中,腐蚀环境下试样在瞬态阶段和稳态阶段的棘轮应变率与空气中的相似;镁合金的腐蚀速率和棘轮应变随应力幅值和平均应力的增大而增大,孪晶、退孪晶的出现使得试样对腐蚀环境的敏感性进一步增加;在腐蚀环境中,镁合金的疲劳寿命大幅缩减,与空气中的试验相比,寿命缩减率达到50%,~90%,;为了能够反映平均应力、应力幅值、腐蚀环境以及最大压应力对AZ31B的低周疲劳寿命的复杂影响,采用FP参数模型对AZ31B进行了寿命预测.基于修正的FP参数模型,较好地预测了AZ31B在腐蚀环境下的低周疲劳寿命.  相似文献   

19.
在20~250℃温度范围内,对AZ31镁合金薄板进行了单向拉伸、筒形件拉深以及胀形试验,并用金相显微镜观察了试验后试件的显微组织。分析了AZ31镁合金在不同工艺所对应的应力状态下塑性变形特点及其最佳成形温度。结果表明,变形过程中所受应力状态对AZ31镁合金最佳成形温度的影响很大,AZ31镁合金在成形过程中受单向拉应力时,其总延伸率随成形温度的升高而增加;应力状态主要为压应力时,最佳成形温度应在tr=1以下;而应力状态主要为双向拉应力时,其最佳成形温度应在tr=1以上。  相似文献   

20.
采用Nakazima半球凸模胀形法获取不同凹模温度下AZ31B镁合金板材的成形极限曲线(FLC),研究了温冲压过程中凹模温度对镁合金板材成形性能的影响.运用有限元法对等双拉试样进行热-力耦合模拟,得到不同凹模温度下的温度场,分析AZ31B镁合金板材与凹模在热传递过程中的热-力耦合关系.另外,通过试制汽车行李箱铰链支架盖板零件,验证了实际工况下凹模温度对AZ31B镁合金板材成形极限的影响.结果表明:凹模温度的降低,会显著改变AZ31B镁合金薄板成形时的温度梯度分布,造成材料成形极限的下降以及破裂位置的改变;不同凹模温度下所得FLC的模拟值与其实验值相符.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号