首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
间伐对杉木人工林生态系统碳储量的短期影响   总被引:1,自引:0,他引:1  
【目的】研究不同间伐强度下杉木人工林生态系统碳储量及其分配格局,进一步优化林分经营管理措施,准确评估间伐对杉木人工林生物量和碳储量的短期影响,为提高人工林的碳汇能力提供依据。【方法】以福建省三明市官庄国有林场11年生杉木人工林为研究对象,选择坡度、坡位、土壤条件相对一致的林分,按照完全随机区组试验设计,设置弱度间伐(31%,伐后林分2 250株/hm2,LIT)、中度间伐(45%,伐后林分1 800株/hm2,MIT)、强度间伐(63%,伐后林分1 200株/hm2,HIT)等3种间伐强度;共设置9块20 m×20 m样地,采集深度为1 m剖面内不同土层的土壤;并在样地内每木检尺,利用生物量回归方程对乔木层生物量进行估算,同时实测林下植被和凋落物生物量;通过元素分析仪测定植被和土壤碳含量,并根据碳含量估算碳储量。【结果】间伐后3年,杉木人工林乔木层碳储量随着间伐强度的增加而减小,LIT、MIT、HIT处理样地乔木层碳储量依次为66.16、58.78、49.71 t/hm2;杉木人工林灌木层和草本层的碳储量随着间伐强度的增加而显著增加,分别占生态系统碳储量的0.03%~0.19%和0.01%~0.67%;凋落物层碳储量占生态系统碳储量的2.87%~4.32%,间伐对凋落物层碳储量无显著影响;土壤有机碳储量在不同间伐处理间差异显著(P<0.05),杉木人工林土壤层碳储量随着间伐强度的增加而降低,HIT处理土壤层碳储量较LIT和MIT处理降低了32.07%和1.03%。间伐后3年,杉木人工林生态系统碳储量随着间伐强度增加而显著降低(P<0.05),LIT、MIT和HIT处理样地总碳储量依次为173.85、161.12、121.73 t/hm2。乔木层和土壤层碳储量之和占比超过90.00%,表明乔木层和土壤层是巨大的碳库,且间伐短期降低生态系统总碳储量。【结论】间伐后短期内杉木人工林乔木层、凋落物层和土壤层碳储量随着间伐强度的增加而下降,而灌木层和草本层的碳储量则随着间伐强度的增加而增加,表明间伐3年后试验林地还处于恢复期,杉木人工林间伐短期内会降低生态系统总碳储量。研究结果可部分解释间伐后短期内杉木人工林生态系统各组分碳储量的分布格局,并为研究区的人工林碳汇增加和可持续经营提供科学依据。  相似文献   

2.
在鸡公山天然落叶栎林中设置样地,调查分析了落叶栎林生态系统土壤碳密度和碳储量,测定了林下植被层和凋落物层碳储量,并用生物量方程法估测了乔木层各组分的生物量及碳储量.结果表明:落叶栎林生态系统总碳储量为156.60 t·hm-2,空间分布特征表现为乔木层(81.65 t·hm-2)>土壤层(66.13 t·hm-2)>凋落物层(7.50 t·hm-2)>灌木层(1.09 t·hm-2)>草本层(0.23 t·hm-2).在不同采样层次上碳含量存在明显差异.土壤层碳储量随着海拔升高而显著增加(p<0.05),随着土层深度增加而显著降低(p<0.05).  相似文献   

3.
瓦屋山林场森林碳密度与碳储量研究   总被引:2,自引:1,他引:1  
在野外实地调查(灌草层、枯落物层和土壤层)的基础上,结合相关乔木树种生物量回归模型(乔木层),研究了瓦屋山林场森林的碳密度及碳储量的分配特征。结果表明:瓦屋山林场的平均碳密度为101.72 t/hm2,碳密度由高到低分别为:乔木层(55.37 t/hm2)、土壤层(41.89 t/hm2)、枯落物层(4.92 t/hm2)、灌草层(0.32 t/hm2)。碳储量为144 820 t,其分配与碳密度一致,从高到低依次为:乔木层(79 204.55 t)、土壤层(59 927.77 t)、枯落物层(5 292.07 t)、灌草层(395.78 t),分别占研究区总碳储量的54.69 %、41.39 %、3.65 %和0.27 %。林分密度大、林龄高和土壤层薄、石砾含量多是瓦屋山林场森林的主要特点,也是影响该区碳分配格局的主要原因。  相似文献   

4.
【目的】对浙江省温州市森林生态系统碳储量进行研究,摸清区域森林碳储量现状,为区域碳汇功能的评价提供基础数据。【方法】基于温州市2018年森林资源年度监测的马尾松林、其他松林、杉木林、柳杉林、柏木林、硬阔林、针叶混交林、阔叶混交林、针阔混交林、毛竹林等10种主要类型的森林资源监测数据,以及30个调查样地的实测数据,用平均生物量转换因子法计算不同森林类型的碳储量和碳密度,同时采用Pearson相关分析法对不同森林生态系统各组分之间有机碳储量进行相关性分析。【结果】2018年,温州市森林生态系统碳储量为81.70 Tg, 其中乔木层18.46 Tg,灌草层1.55 Tg,凋落物层1.02 Tg和土壤层60.67 Tg,分别占生态系统碳储量的22.60%、1.89%、1.25%和74.26%。温州市的森林生态系统碳密度为123.81 t/hm2,其中乔木层27.98 t/hm2,灌草层2.34 t/hm2,凋落物层1.54 t/hm2和土壤层91.95 t/hm2,土壤有机碳库为植被有机碳库的2.88倍。乔木层和土壤层有机碳储量是温州市森林生态系统的主要碳库,占全部森林生态系统有机碳储量的96.86%。乔木层碳密度最大的是柏木林,达到46.06 t/hm2;阔叶混交林碳密度最低,为20.50 t/hm2;土壤层中,碳密度最大的为柳杉林,达到136.97 t/hm2;最小的为其他松木林,为49.38 t/hm2。不同林分生态系统碳密度有一定差异,其中柳杉林碳密度最大(185.42 t/hm2),最低的是马尾松林(83.34 t/hm2)。各组分碳储量相关性分析表明,乔木层与凋落物层碳储量呈显著正相关关系(P<0.05),土壤层碳储量与森林生态系统碳储量呈极显著相关关系 (P<0.01),说明土壤层对整个生态系统碳储量的贡献最大。其他各组分之间相关关系均达不到显著水平。【结论】温州市森林生态系统碳密度略高于浙江省平均水平,但是低于全国平均水平,因此可以通过合理的森林经营管理措施提高森林碳密度。  相似文献   

5.
云南普洱地区思茅松林的生物量   总被引:5,自引:0,他引:5  
本文研究了普洱县小黑江地区海拔890~920m的思茅松林分的生物量.结果如下:①随着林龄增加,林分总生物量增加但叶生物量减少.12年生林分总生物量109.7630 t/hm~2,叶生物量4.5307 t/hm~2,23年生林分总生物量137.6486 t/hm~2,叶生物量3.4861t/hm~2.②活生物量的层次分配顺序为:乔木层>灌木层>草本层.③活生物量在各器官之间的分配顺序为:树干>枝>根系>叶、根劲>果实.④90%~94%的活生物量集中分配在思茅松中.  相似文献   

6.
林龄对侧柏人工林碳储量以及细根形态和生物量的影响   总被引:2,自引:0,他引:2  
以徐州侧柏人工林为研究对象,运用生物量转化方程及土壤调查数据分析了3种林龄下(40、48和55 a)生态系统碳储量的变化及其机制。结果表明:(1)乔木层碳储量在系统碳储量中所占比例随林龄增加呈上升趋势,土壤层碳储量比例呈下降趋势,灌草层和枯落物层碳储量随林龄增加无明显变化。整个系统的碳储量随着林龄增加而增加,其中55年生侧柏人工林生态系统碳储量为109.55 t/hm2,分别是40和48年生的1.22倍和1.09倍,而这种差异主要是由乔木层和土壤层碳储量差异引起。(2)细根生物量方面,细根中低级根(1~3级根)生物量在不同林龄林分中无显著差异,高级根(4、5级根)和总生物量随林龄的增大而明显减少。细根形态方面,与40 a的相比,在表层土壤中,48年生林5级根的直径显著降低,5级根的根长和1级根的比根长显著提高;55年生林4级根的直径和根长以及1级根的比根长显著提高。在亚表层土壤,48年生林3级根的直径和4级根的根长显著增加,1级和2级根的比根长显著降低;55年生林3~5级根的直径和5级根的根长显著提高,3级根的根长以及1级和5级根的比根长显著降低。(3)3级根的直径与土壤层碳储量显著负相关,5级根与生态系统总碳储量显著正相关。2级和3级根的比根长与土壤层碳储量显著正相关,而3级根的比根长与乔木层碳储量、枯落物层碳储量和生态系统总碳储量显著负相关。4级和5级根的生物量与枯落物层碳储量显著正相关,与土壤层碳储量极显著负相关;细根总生物量与乔木层碳储量和总碳储量极显著负相关,与灌木层和草本层碳储量显著负相关。因此,细根形态和生物量的变化可能是导致生态系统碳储量变化的因素之一。  相似文献   

7.
云南昌宁县思茅松林的生物量和净第一性生产力   总被引:5,自引:0,他引:5  
本文研究了昌宁县西桂林场海拔1420~1710 m思茅松林的生物量和净第一性生产力.结果如下:①随着林龄增加,生物量增加而净第一性生产力减少.13年生林分的生物量为102.2936 t/ hm~2、净第一性生产力为24.5636t/hm~2·a, 35年生林分的生物量为218.5430t/hm~2、净第一性生产力为18.3600t/hm~2·a. ②活生物量及净第一性生产力的层次分配顺序为:乔木层>灌木层>草本层.③净第一性生产力在器官间的分配顺序为:树干>叶>根、根系>根颈.13年生和35年生林分生物量在器官间的分配顺序分别为:树干>枝>叶>根系>根颈;树干>根系>根颈>枝>叶.比较发现,思茅松林分布区西北部林分的生物量和净第一性生产力比中部林分的低.  相似文献   

8.
桂东南丘陵地马尾松人工林群落生物量及分布格局   总被引:3,自引:0,他引:3  
采用样方收获和分级取样测定法,对16a生马尾松人工林生物量的积累及分配进行了研究.结果表明:马尾松人工林各器官生物量模型与测树因子(D2H)存在极显著相关关系.16a生马尾松人工林分总生物量为110.449thm-2,群落生物量分布格局为乔木层>死地被物>草本>灌木;马尾松人工林乔木层生物量主要集中在10~20cm径阶范围,占整个乔木层生物量的83.01%,优势木和被压木对林分生物量的贡献不大,平均木构成了乔木层的主林层.乔木层各器官生物量的分布顺序为干材>枝条>根>干皮>叶;各器官生物量所占比例随着胸径的增大呈现不同趋势:干材与干皮积累的生物量所占比例逐步减小,而树枝、树叶、树根的相对比例在增加,马尾松的干、枝生物量差别逐渐缩小,生物量结构随着胸径的增大趋于稳定.  相似文献   

9.
明确南亚热带杉木(Cunnighamia lanceolata)、红锥(Castanopsis hystrix)人工林碳储量及分配特征,可为应对全球气候变化研究提供基础数据,为碳汇林业发展提供科学依据。以我国亚热带地区广泛栽培的杉木人工林和红锥人工林为研究对象,以相对生长方程计算林木生物量,实测林下植被生物量、林木和林下植被各组分含碳率、土壤含碳率等,进而分析不同人工林的碳储量及分配规律。结果表明:(1)人工林生态系统不同组分的含碳率存在一定差异,虽然杉木和红锥的全株含碳率相差无几,分别为48.04%和47.80%,但林下植被和土壤表层的含碳率差别较大,林下植被含碳率为40.84%—47.73%(杉木林)、36.69%—43.76%(红锥林);土壤表层含碳率为2.28%—3.30%;(2)杉木人工林乔木层碳储量(71.48t/hm~2)、林下植被碳储量(1.533t/hm~2)显著高于红锥人工林乔木层碳储量(51.82t/hm~2)和林下植被碳储量(1.185t/hm2),而红锥人工林枯落物层碳储量(0.673t/hm2)显著高于杉木人工林(0.386t/hm~2);(3)杉木人工林的皮、叶、根碳储量显著高于红锥人工林,相反,红锥人工林的枝碳储量(8.04t/hm~2)显著高于杉木人工林(6.00t/hm~2);(4)杉木人工林生态系统碳储量(217.56t/hm~2)与红锥人工林生态系统碳储量(195.05t/hm~2)无显著差异,土壤和乔木层是人工林生态系统的主要碳库,分别占生态系统碳储量的66.37%—72.81%和26.59%—32.93%。杉木人工林乔木层、林下植被和生态系统碳储量均高于红锥人工林,红锥人工林枯落物碳储量显著高于杉木人工林,杉木是发展碳汇林的较好树种。  相似文献   

10.
基于凋落物野外收集的方法,于2004年对北亚热带地区6种主要森林类型凋落物形成过程中碳素归还特征进行了为期1~2 a的研究。结果表明:(1)次生林在3、6月份,马尾松 林2、4月份凋落物有机碳输入形成双峰值;杉木在12月份、早竹在3月份、毛竹林在5—6月份凋落物有机碳输入形成单峰值;(2)次生林以凋落物形式年输入的有机碳储量达到3.22 t/hm2,其次是杉木林和马尾松林,两种不同经营方式毛竹林凋落物有机碳输入量基本相同;早竹林分有机碳输入量最小(1.39 t/hm2);(3)6种土地利用类型凋落物有机碳数量组成 以叶片为主,占整个凋落物的比例为58.00 %~73.65 %,枯枝、果实、杂物等有机碳数量各自占据的比例较小;(4)次生林以凋落物形式归还到地表的有机碳数量最大,表明对改善 土壤有机质状况效果最好,自我肥力能力强,这也说明常绿阔叶林碳汇生态功能具有其他土地利用类型不可比拟的优势。  相似文献   

11.
【目的】大气温室气体浓度增加导致全球气候变暖日益受到重视,保护现有人工林碳贮量以及开展科学的森林经营活动,已成为改善林分结构,增强陆地碳汇的重要措施。【方法】以川东华蓥33年马尾松人工林为对象,采用3种目标树密度(H1.100;H2.150;H3.200株/hm2)经营方式,研究目标树经营后马尾松人工林碳贮量变化。 【结果】与对照林分相比较,目标树经营后乔木层(各器官)、林下层贮量变化差异显著(P<0.05),而不同处理间土壤层碳贮量变化差异不显著(P>0.05);目标树经营后乔木层碳贮量生长量分别为15.65%、18.70%、16.59%,均高于HCK(对照林)的13.4%;目标树干、枝、叶、根和全株碳贮量生长量平均值较一般树高出66.04%、51.25%、52.09%、48.81%和38.67%,各器官碳贮量大小顺序为树干>根系>树枝>树叶;林下层碳贮量变化除草本层为H2>H3>H1>HCK,其余层次皆为H3>H2>H1>HCK;土壤层碳贮量为244.86 t/hm2,占林分总碳贮量76.44%,但土壤表层(0~5cm)碳贮量占土壤层(0~40 cm)的45.52%,并呈现随着土壤深度增加而显著减少的趋势;马尾松林碳库空间分布为土壤层(0~40 cm)>乔木层>灌木层>草本层>枯枝落叶层>粗木残体层。【结论】目标树经营可提高马尾松人工林碳贮量,且经营密度为150株/hm2的马尾松林碳贮量最高。  相似文献   

12.
思茅松种子园遗传结构及遗传多样性   总被引:6,自引:0,他引:6  
采用等位酶分析的方法对思茅松种子园内收集的4个思茅松群体进行遗传分析,以此阐述了思茅松种子园的遗传结构和遗传多样性状况。9种酶16个酶位点的遗传分析结果:思茅松种子园的多态位点比例(P)为73.5%;平均每个位点的等位基因数(A)为2.42;平均每个位点的等位基因有效数(Ne)为1.54;期望杂合度(He)为0.295;实际杂合度(H0)为0.181。结果表明思茅松种子园具有较广泛的遗传基因和遗传多样性;思茅松种子园的建立是思茅松遗传改良的有效途径之一。  相似文献   

13.
在我国西南部横断山地区至云南南部一线,高山松、云南松和思茅松构成有规律的地理替代。这种替代是以生境梯度变化为基础的,针叶、球果等生物学特性也发生了相应的渐进性变化。作者认为,原始云南松适应寒冷或干燥生境而分别演化出高山松与地盘松。适应湿热生境形成细叶云南松(与思茅松有相似之处)。思茅松与云南松的关系尚不清楚。可能是原始松树趋同适应的结果。  相似文献   

14.
江西杉木人工林生物量分配格局及其模型构建   总被引:1,自引:0,他引:1  
在省级尺度上分析不同林龄杉木生物量数据,以探索江西省杉木人工林生物量的动态分配格局及其准确估算方法。结果表明:江西省杉木人工林生物量变化范围为55.64~165.22 t/hm2,其乔木层生物量占94.2%以上。杉木林及其乔木层生物量随林龄先增加后略微下降,而各林龄的灌木层、草本层和凋落物层生物量均没有显著差异。幼龄林、近熟林、成熟林各组分生物量大小排序均为乔木层>凋落物层>灌木层>草本层,而在中龄林和过熟林中则为乔木层>凋落物层>草本层>灌木层。幼龄林各器官生物量大小排序为树干>叶>根>枝,而其他林龄中的排序均为树干>根>枝>叶。以胸径(D)为单变量的杉木单株生物量(W)模型(W=0.266D2.069)及以胸径(D)和树高(H)为变量的模型(W=0.046 9(D2H)0.906 4)预测值小于测量值,且预测精度R2均为0.84,其精度和预测能力均低于以胸径、林龄(A)、密度(N)为自变量的生物量模型(W=11.497D1.847A0.082N-0.478)。  相似文献   

15.
云南糯扎渡保护区电站建设水淹区植被资源调查   总被引:1,自引:0,他引:1  
为了掌握水电站建设水淹区的植被资源决策数据和信息,利用3S技术对糯扎渡省级自然保护区水淹区的植被资源进行调查。结果表明,被淹没的植被类型和面积分别为:季风常绿阔叶林313hm^2,占保护区面积的2.8%;落叶季雨林443hm^2,占33.5%;思茅松林10hm^2,占0.2%;竹林385hm^2,占41.2%;干热河谷稀树草丛73hm^2,占65.2%;灌木林9hm^2,占2.2%。在水电站建设水淹区的植被资源调查中3S技术展现了速度快、精度高且经济的特点。  相似文献   

16.
老顶山人工油松林生物量的研究   总被引:3,自引:0,他引:3  
对海拔1200—1300m处的28年生油松人工林生物量进行了研究。乔木层的生物量采用回归模型预测,其为:油松W树干=2.316(D2H)0.658,W(枝条)=1.313(D2H)0.989,W叶子=1.412(D2H)0.831和W(根条)=1.589(D2H)0.753,灌木和草本植物用表测数据计算。结果表明:6月份人工油松林的总生物量为43.470g/ha,其中乔木层35.679吨/公顷,林下灌木及草本层7.791t/ha。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号