首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
The western Yunnan area is a natural laboratory with fully developed and best preserved Tethyan orogen in the world. Seismic tomography reveals a slab-like high velocity anomaly down to 250 km beneath the western Yunnan Tethyan orogen, to its west there is a low-velocity column about 300 km wide. in the region from Lancangjiang to Mojiang an obvious low velocity in the lower crust and uppermost mantle overlies on the slab. Synthesizing the available geological and geochemical results, the present paper demonstrates that this slab-like high velocity anomaly is a part of the subducted plate of Yangtze Continental segment after the closure of Paleotethys. The collision of India and Eurasia continent starting from 50-60 MaBP might trigger thermal disturbance in the upper mantle and cause the uprising of asthenosphere, in that case the subducted Yangtze plate could be broken off, causing Cenozoic magmatic activities and underplating in the Lancangjiang-Mojiang region.  相似文献   

2.
The low-velocity layer at the depth of 620 km beneath Northeast China   总被引:2,自引:0,他引:2  
Based on the 3-D Earth model, the common convert points-phase weighted stacks (CCP-PWS) migration method is used to image the upper mantle discontinuities beneath Northeast China (longitude 120°―132°; latitude 38°―40°) with 802 observed receiver functions. Teleseismic records are obtained from 4 stations belonging to CCDSN and 19 stations belonging to PASSCAL. A low-velocity layer has been detected at the depth of 620 km. This low-velocity layer rises to 600 km in the east of the study region close to the subducted slab. We consider that this low-velocity layer might be the accumulated oceanic crustal material delaminated from the western Pacific subducted slab. Additionally, we detect the obvious depression of 660 km discontinuity which was attributed to the interaction between the upper mantle and subducted slab. The maximum depth of 660 km discontinuity approaches 700 km, and 660 km discontinuity splits into multiple discontinuities in the northeast of the study region.  相似文献   

3.
Song TR  Helmberger DV  Grand SP 《Nature》2004,427(6974):530-533
The seismic discontinuity at 410 km depth in the Earth's mantle is generally attributed to the phase transition of (Mg,Fe)2SiO4 (refs 1, 2) from the olivine to wadsleyite structure. Variation in the depth of this discontinuity is often taken as a proxy for mantle temperature owing to its response to thermal perturbations. For example, a cold anomaly would elevate the 410-km discontinuity, because of its positive Clapeyron slope, whereas a warm anomaly would depress the discontinuity. But trade-offs between seismic wave-speed heterogeneity and discontinuity topography often inhibit detailed analysis of these discontinuities, and structure often appears very complicated. Here we simultaneously model seismic refracted waves and scattered waves from the 410-km discontinuity in the western United States to constrain structure in the region. We find a low-velocity zone, with a shear-wave velocity drop of 5%, on top of the 410-km discontinuity beneath the northwestern United States, extending from southwestern Oregon to the northern Basin and Range province. This low-velocity zone has a thickness that varies from 20 to 90 km with rapid lateral variations. Its spatial extent coincides with both an anomalous composition of overlying volcanism and seismic 'receiver-function' observations observed above the region. We interpret the low-velocity zone as a compositional anomaly, possibly due to a dense partial-melt layer, which may be linked to prior subduction of the Farallon plate and back-arc extension. The existence of such a layer could be indicative of high water content in the Earth's transition zone.  相似文献   

4.
We constrain SH wave velocity structure for the upper mantle beneath western Qiangtang Terrane by comparing regional distance seismic triplicated waveforms with synthetic seismograms, based on an intermediate event (-220 km) recorded by the INDEPTH-Ⅲ seismic array. The ATIP model reveals a low-velocity anomaly with up to -4% variation at the depth of 190-270 km and a relatively small velocity gradient above the depth of 410 km in the upper mantle, which is in agreement with previous results. In combination with other geological studies, we suggest that the depth of top asthenosphere is 190 km and no large-scale lithosphere thinning occurs in western Qiangtang Terrane, besides, Qiangtang Terrane has the same kind of upper mantle structure as the stable Eurasia.  相似文献   

5.
Holocene volcanic rocks in Jingbo Lake region ? Diversity of magmatism   总被引:2,自引:0,他引:2  
During the time from 5500 a to 5200 a BP more than 10 Holocene volcanoes in Jingbo Lake region erupted and the volcanic rocks covered an area of about 500 km2. Holocene volcanic rocks in Jingbo Lake region belong to the potassium?rich rocks and contain three rock types: trachybasalts, basanites and phonotephrites. Various types of magmatism formed in a small area and in a short period of time came from partial melting of potassically?metasomatised lithospheric mantle. The diversity of magmatism can be explained by that Jingbo Lake is situated in the back?arc extensional region of East Asian continent subducted by the Pacific Ocean, and potassic fluid derived from mantle wedge or dehydration of subducted slab can result in a high heterogeneity of the mantle beneath this region. Based on the pressure estimation of clinopyroxene megacrysts, we estimate that phonotephrite magma fractionally crystallize at ca. 52?54 km down the earth.  相似文献   

6.
Irifune T  Higo Y  Inoue T  Kono Y  Ohfuji H  Funakoshi K 《Nature》2008,451(7180):814-817
The composition of the mantle transition region, characterized by anomalous seismic-wave velocity and density changes at depths of approximately 400 to 700 km, has remained controversial. Some have proposed that the mantle transition region has an olivine-rich 'pyrolite' composition, whereas others have inferred that it is characterized by pyroxene- and garnet-rich compositions ('piclogite'), because the sound velocities in pyrolite estimated from laboratory data are substantially higher than those seismologically observed. Although the velocities of the olivine polymorphs at these pressures (wadsleyite and ringwoodite) have been well documented, those of majorite (another significant high-pressure phase in the mantle transition region) with realistic mantle compositions have never been measured. Here we use combined in situ X-ray and ultrasonic measurements under the pressure and temperature conditions of the mantle transition region to show that majorite in a pyrolite composition has sound velocities substantially lower than those of earlier estimates, owing to strong nonlinear decreases at high temperature, particularly for shear-wave velocity. We found that pyrolite yields seismic velocities more consistent with typical seismological models than those of piclogite in the upper to middle parts of the region, except for the potentially larger velocity jumps in pyrolite relative to those observed at a depth of 410 km. In contrast, both of these compositions lead to significantly low shear-wave velocities in the lower part of the region, suggesting possible subadiabatic temperatures or the existence of a layer of harzburgite-rich material supplied by the subducted slabs stagnant at these depths.  相似文献   

7.
对中国地震科学台阵探测项目一期于2011—2013年布设在红河断裂以西大理永平地区的5个流动台站进行横波分裂研究, 分别得到18, 14, 7, 9 和5个横波分裂参数测量结果, 并使用更精确的实际横波路径, 通过过量归一化方法进行改正, 研究该区域各向异性分层特征。结果显示, 研究区上地壳10 km深度之上存在各向异性强度大小相间的3层各向异性层, 其中第2层各向异性强度最小, 厚度为2~2.4 km; 第1层各向异性强度稍强, 厚度为4.1~5.0 km; 第3层各向异性强度最强。各向异性分层特征与前人在该区域的大地电磁测深结果吻合。结合滇西地区地壳中的低速异常、低电阻率和低Q值现象, 认为第3层的强各向异性是地幔物质上涌造成裂隙发育以及热流上传所致。  相似文献   

8.
The Central Andes are the Earth's highest mountain belt formed by ocean-continent collision. Most of this uplift is thought to have occurred in the past 20 Myr, owing mainly to thickening of the continental crust, dominated by tectonic shortening. Here we use P-to-S (compressional-to-shear) converted teleseismic waves observed on several temporary networks in the Central Andes to image the deep structure associated with these tectonic processes. We find that the Moho (the Mohorovici? discontinuity--generally thought to separate crust from mantle) ranges from a depth of 75 km under the Altiplano plateau to 50 km beneath the 4-km-high Puna plateau. This relatively thin crust below such a high-elevation region indicates that thinning of the lithospheric mantle may have contributed to the uplift of the Puna plateau. We have also imaged the subducted crust of the Nazca oceanic plate down to 120 km depth, where it becomes invisible to converted teleseismic waves, probably owing to completion of the gabbro-eclogite transformation; this is direct evidence for the presence of kinetically delayed metamorphic reactions in subducting plates. Most of the intermediate-depth seismicity in the subducting plate stops at 120 km depth as well, suggesting a relation with this transformation. We see an intracrustal low-velocity zone, 10-20 km thick, below the entire Altiplano and Puna plateaux, which we interpret as a zone of continuing metamorphism and partial melting that decouples upper-crustal imbrication from lower-crustal thickening.  相似文献   

9.
The possible subduction of continental material to depths greater than 200 km   总被引:102,自引:0,他引:102  
Ye K  Cong B  Ye D 《Nature》2000,407(6805):734-736
Determining the depth to which continental lithosphere can be subducted into the mantle at convergent plate boundaries is of importance for understanding the long-term growth of supercontinents as well as the dynamic processes that shape such margins. Recent discoveries of coesite and diamond in regional ultrahigh-pressure (UHP) metamorphic rocks has demonstrated that continental material can be subducted to depths of at least 120 km (ref. 1), and subduction to depths of 150-300 km has been inferred from garnet peridotites in orogenic UHP belts based on several indirect observations. But continental subduction to such depths is difficult to trace directly in natural UHP metamorphic crustal rocks by conventional mineralogical and petrological methods because of extensive late-stage recrystallization and the lack of a suitable pressure indicator. It has been predicted from experimental work, however, that solid-state dissolution of pyroxene should occur in garnet at depths greater than 150 km (refs 6-8). Here we report the observation of high concentrations of clinopyroxene, rutile and apatite exsolutions in garnet within eclogites from Yangkou in the Sulu UHP metamorphic belt, China. We interpret these data as resulting from the high-pressure formation of pyroxene solid solutions in subducted continental material. Appropriate conditions for the Na2O concentrations and octahedral silicon observed in these samples are met at depths greater than 200 km.  相似文献   

10.
By processing the CSND Rayleigh wave data with the matched filter FTAN technique, Rayleigh wave disper- sion for southeast China is obtained. The 4°×4°S wave dispersion of the pure path is calculated using random inversion scheme, and 3-D S wave velocity structure is set up. Incorporating the above-mentioned results with wide angle seismic sounding data, we studied structure framework and the extending of faults in this area, which demonstrates that the depth of Moho in South China varies from 30 to 40 km, shallower from west to east. The depth of Moho varies from 25 to 28 km for the offshore. The depth of the asthenosphere in upper mantle varies from 60 to 100 km. The depth difference of layers at the two sides of Tanlu fault is more than 10 km at the south part of the Yangtze River, and the fault extends downward more than 170 km. The fault exceeds the main land at Hainan Island and slips into the southern China Sea. Both Tanlu fault and the huge bend of gravity gradient anomaly are influenced by deep latent tectonics.  相似文献   

11.
Post-collisional lithosphere delamination of the Dabie-Sulu orogen   总被引:3,自引:0,他引:3  
The consistence between the first rapid cooling time (226-219 Ma) of the untrahigh pressure metamorphic (UHPM) rocks in the Dabie Mountains and the formation time (205-220 Ma) of the syncollisional granites in the Qinling and Sulu areas suggests that the first rapid cooling and uplift of the UHPM rocks may be related to breakoff of subducted plate. Therefore the second rapid cooling and uplift (180-170 Ma) of the UHPM racks needs a post-collisional lithosphere delamination which resulted in the granitic magmatism with an age of about 170 Ma. In addition, the rapid rising of the Dabie dome in the early Cretaceous (130-110 Ma) and the corresponding large-scale magmatism in the Dabie Mountains need another lithosphere delamination. The geochronology of the post-collis- ional mafic-ultramafic intrusions and geological relationship between the mafic-ultramafic intrusions and granites suggest that partial melting was initiated in the mantle, and then progressively developed in the crust, suggesting a mantle upwelling underneath the Dabie Mountains. The unusual fractional trend of the gabbros characterized by lower SiO2 content (46.24%) corresponding to lower MgO content (4.53%) and their typical geochemistry features of the lower crust suggest underplating of the mantle derived magma and interaction between the magma and lower crust before their intrusion. Lithosphere delamination could be the dynamic cause of the mantle upwelling and underplating. The seismic tomography results of the Dabie Mountains and adjacent areas clearly show lithosphere thinning below the north and south sides of the Dabie Mountains. Because there is no Cenozoic magma event in the Dabie Mountains, the lithosphere thinning may result from delamination of thickened lithosphere mantle after collision. In addition, both the lower velocity zone in the 40 km depth and the basin + dome + basin coupling relationship in the Dabie Mountains also suggest the lithosphere delamination and underplating on the two sides of the orogen.  相似文献   

12.
For better studying the relationship between the rifts and deep structure, a detailed P-wave velocity structure under eastern Tibet has been modeled using 4767 arrival times from 169 teleseismic events recorded by 51 portable stations. In horizontal slices through the model, a prominent low-velocity anomaly was detected under the rifts from the surface to a depth of ~250 km; this extends to a depth of ~400 km in the vertical slice. This low-velocity anomaly is interpreted as an upper mantle upwelling. The o...  相似文献   

13.
Seismic tomography reveals that a subducted ancient block has been preserved beneath the Moho of the Dabie-Sulu orogenic belt. Taking into account of geological and geochronological data, we inferred from the tomographic images that the Yangtze block was subducted northward beneath the Sino-Korean block and broken off at the depth <200 km during 200—190 Ma. The slab breakoff of the Yangtze block is the most important dynamic mechanism to control the exhumation of UHP rocks.  相似文献   

14.
A trondhjemitic body occurs in the Aoyougou area,the western part of the North Qilian orogen.It is geochemically characterized by high SiO 2,Na 2 O (high Na/K),elevated Sr/Y and (La/Yb) N,positive Sr anomaly,relatively enriched large ion lithophile elements (LILEs) and light rare earth elements (LREEs),and depleted Nb,Ta,Ti,resembling the high-silica adakite.Zircon U-Pb SHRIMP dating yields a weighted mean age of 438±3 Ma.This age is significantly younger than eclogitization ages of 460-490 Ma in the North Qilian orogen,suggesting that formation of the adakite postdates the subduction of oceanic crust in association with closure of the ancient Qilian Ocean.Whole-rock Sr and Nd isotopic analyses give initial ratios of I Sr =0.7044 0.7047 and Nd (t)=3.0 4.1,indicating that they are derived from partial melting of the juvenile oceanic crust.In view of the tectonic evolution of the North Qilian orogen,the high-silica adakite was probably derived from decompression melting of the exhumed eclogite at the depth of ~60 km.  相似文献   

15.
Hutko AR  Lay T  Garnero EJ  Revenaugh J 《Nature》2006,441(7091):333-336
Seismic tomography has been used to infer that some descending slabs of oceanic lithosphere plunge deep into the Earth's lower mantle. The fate of these slabs has remained unresolved, but it has been postulated that their ultimate destination is the lowermost few hundred kilometres of the mantle, known as the D' region. Relatively cold slab material may account for high seismic velocities imaged in D' beneath areas of long-lived plate subduction, and for reflections from a seismic velocity discontinuity just above the anomalously high wave speed regions. The D' discontinuity itself is probably the result of a phase change in relatively low-temperature magnesium silicate perovskite. Here, we present images of the D' region beneath the Cocos plate using Kirchhoff migration of horizontally polarized shear waves, and find a 100-km vertical step occurring over less than 100 km laterally in an otherwise flat D' shear velocity discontinuity. Folding and piling of a cold slab that has reached the core-mantle boundary, as observed in numerical and experimental models, can account for the step by a 100-km elevation of the post-perovskite phase boundary due to a 700 degrees C lateral temperature reduction in the folded slab. We detect localized low velocities at the edge of the slab material, which may result from upwellings caused by the slab laterally displacing a thin hot thermal boundary layer.  相似文献   

16.
25 years of continental deep subduction   总被引:2,自引:0,他引:2  
This year marks the 25th anniversary of the discovery of coesite in metamorphic rocks of supracrustal origin. This initiated a revolution of the plate tectonics theory due to intensive studies of ultrahigh pressure metamorphism and continental deep subduction. The occurrence of coesite was first reported in 1984 by two French scientists, C. Chopin and D.C. Smith,  相似文献   

17.
Cratonic destruction or lithospheric thinning beneath North China makes it as one of the most ideal areas for the studying on the formation and evolution of continent. However, the mechanism, time, range and dynamic setting of the destruction, even the lithospheric status before the destruction, are contentious. The comparison among mantle xenoliths in the volcanic rocks from different captured times (e.g. Paleozoic, Mesozoic and Cenozoic) and locations (e.g. intra-plate or its rim, the translithospheric Tanlu fault or the North-South Gravity Line), and peridotitic massifs within the Sulu-Dabie ultrahigh-pressure metamorphism belt along the southern margin of the North China Craton, indicates that (1) the cratonic lithosphere is heterogeneous in structure and composition, and contains mantle weak zones; and (2) the Mesozoic-Cenozoic lithospheric thinning process is complex, including lateral spreading of lithosphere, interaction between melt and peridotite, non-even asthenospheric erosion (huge lithospheric thinning), and the limited lithospheric accretion and thus thickening, which resulted in the final replacement of the refractory cratonic lithosphere by juvenile fertile mantle. In early Mesozoic, the integrity of the North China Craton was interrupted, even destroyed by subduction and collision of the Yangtze block. The mantle wedge of the North China Craton was also metasomatized and modified by melt/fluids revealed from the subducted Yangtze continent. Lithospheric mantle extension and tectonic intrusion of the North China Craton also occurred, accompanied by the asthenospheric upwelling that due to the detachement of the subducted Yangtze continent (orogenic root). During early Cretaceous-early Tertiary, the huge thinning of lithosphere was triggered by the upwelling asthenosphere due to the subduction of the Pacific plate. Since late Tertiary, the cooling of the upwelling asthenosphere resulted in the replacement of the mantle in existence by the newly accreted lithosphere, accompanied with a little thickness in lithosphere and thus finally achieved the lithospheric thinning as a whole. The translithospheric faults, such as the Tanlu fault, play excellent channels for asthenospheric upwelling. Meanwhile, the channels in lithosphere are usually irregular, which resulted in different eruption times of magma. Peridotite xenolith in the basalts erupted at 100 Ma is mainly fertile, indicating such a fact, that is, the mantle replacement occurred before the eruption (e.g. 125--100 Ma) beneath the eastern part of the North China Craton.  相似文献   

18.
The Earth's mantle   总被引:6,自引:0,他引:6  
Helffrich GR  Wood BJ 《Nature》2001,412(6846):501-507
Seismological images of the Earth's mantle reveal three distinct changes in velocity structure, at depths of 410, 660 and 2,700 km. The first two are best explained by mineral phase transformations, whereas the third-the D" layer-probably reflects a change in chemical composition and thermal structure. Tomographic images of cold slabs in the lower mantle, the displacements of the 410-km and 660-km discontinuities around subduction zones, and the occurrence of small-scale heterogeneities in the lower mantle all indicate that subducted material penetrates the deep mantle, implying whole-mantle convection. In contrast, geochemical analyses of the basaltic products of mantle melting are frequently used to infer that mantle convection is layered, with the deeper mantle largely isolated from the upper mantle. We show that geochemical, seismological and heat-flow data are all consistent with whole-mantle convection provided that the observed heterogeneities are remnants of recycled oceanic and continental crust that make up about 16 and 0.3 per cent, respectively, of mantle volume.  相似文献   

19.
Seismic tomography of the northwest Pacific and its geodynamic implications   总被引:4,自引:0,他引:4  
High-resolution tomographic images across Japan Trenh-Changhai Mountains-lDong Ujimqinqi are displayed, showing the morphological feature of the subducted slab in the norhwestem Pacific margin and the eharaeter istics of lithosphere stmctures under the Changhai Mountains and the Da Hinggan Mnuntains. The Pacific plate began to penetrate into the deeper mantle after it subducted to the 660 km discontinuity with an underthmsting angle of 26°, but did not continue to mnve furrther westward. In contrast, there appeared a remarkable thermal upwelling zone to the west of the downward plate. In addition, the evidence frnm the subduction time and time lag between the subduetion and eon sequent magmatism indicates that there is no direct genetic correlatiom between the Mesoznic magmatism in eastern China ami subduction of the Pacific plate. In this work. we also emphasize that what the tomographic images reflect is the pre sent structure in the deep earth interior, which should preserve some Mesozoic lithospheric structure characteristics. In summary, we attribute the Mesozoic intense magmatic evolution in north China to the intraplate asthenosphere upwelling zone.  相似文献   

20.
Mineralogical evidence for continental deep subduction   总被引:2,自引:0,他引:2  
Diamond is an index mineral to prove ultrahigh pressure (UHP) metamorphic conditions because it is only stable at the pressures above 3.3 GPa. Its occurrence in eclogite-facies metamorphic rocks suggests plate subduction to depths over 120 km assuming the normal gradient of lithostatic pressure. Because UHP eclogites are the metamorphic products of basaltic rocks, the occurrence of diamond in the eclogites demonstrates a complete geodynamic cycle in that mafic crustal rocks were subducted t…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号