首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 609 毫秒
1.
系统研究了硫酸盐对掺聚羧酸减水剂水泥浆体流变性及水化性能的影响.结果表明:硫酸盐降低了聚羧酸减水剂在水泥颗粒表面的吸附量,削弱了聚羧酸减水剂对水泥浆体的分散作用.随着硫酸盐掺量的增加,聚羧酸减水剂分散性能下降.少量硫酸盐延缓了水化加速期最大水化放热速率峰的出现,并且提高了最大水化放热速率.而大量硫酸盐则使得水泥水化诱导期缩短,最大水化速率峰显著提前.大量硫酸盐的加入促进了水泥浆体中钙矾石(AFt)的生成,削弱了水化铝酸钙(CAH)的生成.MgSO4对于水泥浆体中水化产物生成的促进作用最明显.掺加MgSO4的水泥水化产物中含有大量细丝状水化硫铝酸盐产物.MgSO4对水泥水化具有显著延缓作用,水化产物结晶成核作用较缓慢,从而使得水化产物生成及分布更加均匀,形状更加细小.  相似文献   

2.
将自制抗泥型聚酯类(PC1)和聚醚类(PC2)聚羧酸系减水剂复配,系统研究了不同复配比对减水剂分散性能的影响.通过FTIR,XRD,SEM,XPS和TG-DTG分析了减水剂分子结构和抗泥机理.结果表明:减水剂链段中含有酯基、羧基、酰胺基、磺酸基、羟基等官能团.当酯醚复配比例为2∶3时,水泥初始净浆流动度为281 mm, 30 min和60 min的经时损失率为2.85%和6.05%.该复配减水剂延缓了水泥7 d水化过程.膨润土对其吸附以表面吸附为主,吸附层厚度6.24 nm;以插层吸附为辅,层间距由1.248 0 nm变为1.800 1 nm,增大了0.552 1 nm.  相似文献   

3.
为了揭示含泥量对聚羧酸减水剂分散能力的影响,试验选择净浆流动度和黏度两个指标,研究泥对掺聚羧酸减水剂水泥浆体流变性质的影响,并利用IR、UV手段分析确定了泥的滤液对聚羧酸减水剂分子结构的影响及碱性环境中聚羧酸减水剂在泥颗粒表面的吸附规律。结果表明:当泥取代水泥质量的15%时,聚羧酸减水剂由于泥的存在已无分散效果;增大聚羧酸减水剂掺量可以提高含泥水泥浆体的分散性;泥的滤液不会改变聚羧酸减水剂的分子结构、对聚羧酸减水剂的分散能力无不利影响;在饱和石灰水模拟的碱性环境中,泥对减水剂的吸附很快,初始时间里(6 min内)泥就已经充分吸附了聚羧酸减水剂,泥对聚羧酸减水剂的吸附量为水泥的4倍左右。  相似文献   

4.
系统研究了硫酸盐对聚羧酸减水剂吸附-分散性能的影响及其作用机理.通过净浆流动度试验及Marsh时间试验研究了硫酸盐种类及掺量对聚羧酸减水剂分散性能的影响,并通过zeta电位、平衡吸附量及絮凝结构形貌等微观测试手段对硫酸盐影响聚羧酸减水剂分散性的作用机理进行分析.结果表明:随着硫酸根溶出率及溶出速率的增加,硫酸根离子与聚羧酸减水剂间的竞争吸附作用增强;硫酸根离子破坏浆液双电层,促使zeta电位绝对值下降,从而削弱水泥颗粒表面的静电斥力作用,导致水泥浆体絮凝结构数量及强度增大,相同剪切速率对浆体中的絮凝结构破坏程度下降,浆体分散性及流变性下降.  相似文献   

5.
以烯丙基聚氧乙烯醚2000(APEG2000)、马来酸酐(MAH)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)和甲基丙烯酸羟乙酯(HEMA)为原料,(NH_4)_2S_2O_8为引发剂,沉淀法合成APEG-MAH-AMPS-HEMA固体醚类抗泥型聚羧酸系水泥减水剂。经正交试验确定最佳工艺条件:n(APEG)∶n(MAH)∶n(AMPS)∶n(HEMA)=1.0∶1.0∶0.8∶0.4,ω[(NH_4)_2S_2O_8]=2.5%,聚合温度65℃,聚合时间8 h。当蒙脱土掺量为1.5%时,水泥初始净浆流动度为292 mm。通过红外光谱(FTIR)、X-射线衍射(XRD)、X-射线光电子能谱(XPS)和热重(TG-DTG)分析了减水剂分子结构和抗泥机理。结果表明:减水剂链段含有酯基、羧基、酰胺基、磺酸基等官能团,它的加入促进了水化进程,但不影响水泥和蒙脱土的结构;蒙脱土对其吸附以表面吸附为主,吸附层厚度5.25 nm;以插层吸附为辅,层间距由0.989 8 nm变为0.995 1 nm,增大了0.005 3 nm。  相似文献   

6.
采用净浆流动度、ζ电位、总有机碳(TOC)、红外光谱等实验,研究粉煤灰中氧化铁含量对不同结构聚羧酸减水剂吸附性能的影响,探讨氧化铁影响聚羧酸减水剂对水泥分散性能的机理,并提出了相应改进方法.结果表明:粉煤灰中氧化铁含量对掺不同结构聚羧酸减水剂的水泥净浆流动度均有很大影响,当氧化铁质量为粉煤灰总质量的18%时相应浆体基本失去流动性;加入硫化钠能使氧化铁与聚羧酸减水剂的吸附性能降低,浆体流动度有所改善.高氧化铁粉煤灰对聚羧酸减水剂的吸附性很强,与普通Ⅱ级粉煤灰相比,外加剂溶液中有机碳的含量要减少1/3.电泳实验表明:氧化铁的含量越多,体系ζ电位绝对值越小,分散稳定性越差.红外光谱表明:硫化钠的加入降低了高氧化铁粉煤灰对聚羧酸减水剂的吸附.  相似文献   

7.
目的研究骨料中的泥对聚羧酸减水剂(PCE)分散作用的影响,并合成聚合物降低泥对聚羧酸减水剂的分散作用.方法以丙烯酰胺(AM)为单体,过硫酸铵(APS)为引发剂、甲基丙烯磺酸钠(SMAS)为链转移剂,合成一种低分子量的丙烯酰胺聚合物(PAM),并测试了不同含泥条件下水泥对聚羧酸减水剂的吸附量以及水泥的流动度,确定PAM的合理配比.结果自制的聚丙烯酰胺可明显改善泥对减水剂吸附,在细骨料含泥质量分数为5%、减水剂掺量为0.3%、水灰质量比为0.29条件下,PAM的最佳掺量为1.2%,泥对聚羧酸减水剂的影响可明显降低.结论泥与水泥相比对聚羧酸减水剂的吸附量较大,蒙脱石对于PCE的吸附导致减水剂失效;PAM与PCE之间存在吸附竞争,PAM可优先吸附,有利于水泥流动度的改善.  相似文献   

8.
分别以丙烯酸羟乙酯(HEA)、丙烯酸羟丙酯(HPA)、衣康酸二甲酯(DEI)、富马酸二甲酯(DMF)作为功能小单体,丙烯酸和甲基烯丙基聚氧乙烯醚(HPEG)为主要原料,在氧化-还原体系下,成功制备了一系列缓释型聚羧酸减水剂(PCE)。采用红外光谱(FTIR)、核磁共振氢谱(1H NMR)等对目标产物的结构进行了表征。根据水泥净浆的流动性对比结果,确定了合成的减水剂在不同时间所达到的最大流动度,考察了不同酯类单体对聚羧酸减水剂的缓释性及分散保持性能的影响,并测试了水泥浆体的Zeta电位、PCE的吸附行为。结果表明: DEI的缓释效果优于HEA和HPA,水泥浆流动度在2 h内从190 mm达到255 mm,大大延长了减水剂PCE在水泥表面的吸附时间和流动度保持时间,在实际应用中具有良好的参考意义和应用前景。  相似文献   

9.
从聚羧酸减水剂的分子结构、分子量、掺入方式、吸附性能、水泥精细度、熟料组分、碱含量、硫酸根离子含量等因素对聚羧酸减水剂性能的影响进行了分析,以探索提高聚羧酸减水剂性能的解决办法。  相似文献   

10.
从氯离子等温吸附、吸附动力学及吸附热力学3个方面,研究聚羧酸减水剂对水泥浆结合氯离子性能的影响,同时应用XRD微观测试技术研究其作用机理。结果表明:掺入聚羧酸减水剂使水泥浆体结合氯离子能力减弱,且水灰比越小,这种影响作用则越大;掺入聚羧酸减水剂的水泥浆体对氯离子的固化过程,短期内符合准一级动力学方程,表现为物理吸附,长期内符合准二级动力学方程,表现为化学结合,其中随着聚羧酸减水剂掺量的增大,吸附速率逐渐减小;聚羧酸减水剂使水泥浆结合氯离子过程中的自由能变、焓变和熵变都减小,且这个过程是自发、放热的;掺入聚羧酸减水剂主要影响水泥浆体对氯离子的物理吸附,对化学结合没有明显影响。  相似文献   

11.
研究了吸附溶液体系温度、pH值和电解质浓度等对甲基丙烯酸-甲氧基聚乙二醇甲基丙烯酸酯(MAA-MPEGMA)梳形聚羧酸共聚物在水泥颗粒表面的吸附行为的影响。聚羧酸共聚物在水泥颗粒表面的吸附呈Langmuir等温吸附模型。吸附量随着温度的升高而降低,表明聚羧酸共聚物在水泥颗粒表面的吸附是一个放热反应。根据Clausius-Clapeyron方程计算吸附热为17.4kJ/mol。聚羧酸共聚物在水泥颗粒表面的标准吸附自由能<0,吸附是自发的。吸附量随着体系pH值的增大、电解质浓度的增大而减小。红外光谱分析表明,聚羧酸共聚物在水泥颗粒表面的吸附是通过分子结构上羧基与Ca2+间的配合作用实现的,说明这种吸附是一种化学吸附。  相似文献   

12.
利用增钙、机械粉磨等手段对玻璃粉进行局部活化,采用SEM、XRD等测试方法研究了改性玻璃粉水泥浆水化产物和微观结构,并讨论了改性玻璃粉在水泥浆水化硬化过程的作用。研究表明:氧化钙的掺入提高了复合体系液相的碱度,从而加快了水泥水化反应生成更多水化产物;掺入氧化钙的玻璃粉水泥浆微观结构更为密实,28 d龄期时水化产物间的孔隙远远小于3 d,水化产物发育更好,硬化浆体的强度大幅提高。当CaO掺量过大(6%)时,生成过多的氢氧化钙晶体引起膨胀开裂,对玻璃粉水泥浆的强度发展产生不利影响。  相似文献   

13.
研究了低水灰比硅酸盐水泥的水化程度,并利用XRD和SEM分析了硬化水泥浆体的微观结构。结果表明在低水灰比条件下,水泥的水化程度较低,其硬化水泥浆体中存在较多的未水化水泥;同时由于自身的密实性增强和体系的低孔隙率,使水泥水化产物的结晶、生长情况也受到影响。  相似文献   

14.
聚羧酸减水剂对水泥水化过程的影响   总被引:1,自引:0,他引:1  
从水泥浆的液相电导率、pH值和水化程度三方面讨论了聚羧酸共聚物对水泥水化的影响.研究结果表明,共聚物对水泥的水化过程有缓凝作用.共聚物的掺量(即聚灰比)越大其缓凝作用越明显,且在其它配方相同时,侧链聚乙二醇(PEG)的分子量不同,对缓凝作用也有影响,掺入的PEG分子量越大缓凝作用越明显.此外,还利用傅里叶变换红外光谱法验证了聚羧酸共聚物与水泥水化产生的钙离子会发生配位反应,并分析了聚羧酸减水剂对水泥水化的影响机理.  相似文献   

15.
固井水泥石微结构发育规律是固井工艺设计和固井质量评价的重要参考依据.以HYMOSTRUC3D软件为基础,建立了水泥水化模型,获取了CH[CH表示Ca(OH)2晶体]含量和抗压强度,并对实验结果进行了对比,模拟结果与实验结果的偏差基本都在10%以内.然后,基于水泥水化模型获取了不同水灰比(W/C,W/C=0.4、0.44、0.5、0.6、0.8、1.0、2.0)和水化龄期对固井水泥浆水化过程中C3S(3CaO·SiO2),C2S(2CaO·SiO2),C3A(3CaO·Al2O2),C4AF(4CaO·Al2O3·Fe2O3),C-S-H(Ca5Si6O16(OH)·4H2O)CH、孔隙率、孔径分布、抗压强度和三维结构等的影响.同时,采用Ryshkewitch方程、Schiller方程和二次线性方程重点讨论了抗压强度与孔隙率的关系.结果表明:在水泥水化过程中,随水化反应的进行,水泥石孔隙率逐渐减小,抗压强度增大;随水灰比增大,粗孔含量增加,细孔占比减小,孔隙率增大,孔径分布变宽,抗压强度减小.采用Ryshkewitch方程、Schiller方程和二次线性方程拟合抗压强度与总孔隙率和毛细孔隙率的相关系数都达到0.92以上,分别为0.96、0.92、0.95和0.98、0.97、0.98;毛细孔隙率是固井水泥石强度发展的主要影响因素.  相似文献   

16.
掺MgO膨胀剂水泥浆体膨胀机理研究述评   总被引:3,自引:0,他引:3  
综述了氧化镁膨胀剂的研究起源、MgO水化膨胀机理的研究现状及养护温度、煅烧制度和水泥品种等对掺MgO膨胀剂水泥浆体膨胀性能的影响;并讨论了掺MgO膨胀剂水泥浆体的膨胀机理.认为目前理论的不足在于混淆了MgO在水泥浆体中的水化膨胀机理和掺MgO膨胀剂水泥浆体的膨胀机理两个概念,这严重影响了膨胀机理研究的进展和对实际工程的指导作用.只有掺MgO膨胀剂水泥浆体的膨胀机理对实际工程才具有较为全面的指导作用,而对该机理的研究则需要深入探讨水泥中MgO的水化膨胀机理及水泥浆体的特性对掺MgO膨胀剂水泥浆体膨胀性能的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号