首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
目的研究骨料中的泥对聚羧酸减水剂(PCE)分散作用的影响,并合成聚合物降低泥对聚羧酸减水剂的分散作用.方法以丙烯酰胺(AM)为单体,过硫酸铵(APS)为引发剂、甲基丙烯磺酸钠(SMAS)为链转移剂,合成一种低分子量的丙烯酰胺聚合物(PAM),并测试了不同含泥条件下水泥对聚羧酸减水剂的吸附量以及水泥的流动度,确定PAM的合理配比.结果自制的聚丙烯酰胺可明显改善泥对减水剂吸附,在细骨料含泥质量分数为5%、减水剂掺量为0.3%、水灰质量比为0.29条件下,PAM的最佳掺量为1.2%,泥对聚羧酸减水剂的影响可明显降低.结论泥与水泥相比对聚羧酸减水剂的吸附量较大,蒙脱石对于PCE的吸附导致减水剂失效;PAM与PCE之间存在吸附竞争,PAM可优先吸附,有利于水泥流动度的改善.  相似文献   

2.
本文使用马来酸酐、丙烯酸羟乙酯和甲基烯丙基聚氧乙烯醚大单体通过水溶液自由基共聚法合成了一种缓释型聚羧酸减水剂,并讨论了原料配比和合成工艺对减水剂性能的影响.结果表明,当n(MA)∶n(TPEG)∶n(HEA)=3.5∶1∶1,引发剂用量为单体总质量的3.0%,反应温度为80℃,反应时间为4.5h,所合成的减水剂在掺量0.2%时,即使在35℃高温下,水泥净浆流动度初始达258mm,1.5h时仅损失30mm,达到了很好的缓释效果.  相似文献   

3.
为了揭示含泥量对聚羧酸减水剂分散能力的影响,试验选择净浆流动度和黏度两个指标,研究泥对掺聚羧酸减水剂水泥浆体流变性质的影响,并利用IR、UV手段分析确定了泥的滤液对聚羧酸减水剂分子结构的影响及碱性环境中聚羧酸减水剂在泥颗粒表面的吸附规律。结果表明:当泥取代水泥质量的15%时,聚羧酸减水剂由于泥的存在已无分散效果;增大聚羧酸减水剂掺量可以提高含泥水泥浆体的分散性;泥的滤液不会改变聚羧酸减水剂的分子结构、对聚羧酸减水剂的分散能力无不利影响;在饱和石灰水模拟的碱性环境中,泥对减水剂的吸附很快,初始时间里(6 min内)泥就已经充分吸附了聚羧酸减水剂,泥对聚羧酸减水剂的吸附量为水泥的4倍左右。  相似文献   

4.
通过水溶液自由基聚合法合成了含有不同官能团的聚羧酸减水剂,并研究了不同结构聚羧酸减水剂的吸附-分散性能,以及其对水泥水化性能的影响.结果表明:含酰胺基的聚羧酸减水剂对水泥浆体流动度的削弱程度最大,含酯基官能团的聚羧酸减水剂对水泥浆体流动度的影响程度较小.含磺酸基团的聚羧酸减水剂吸附性能增强;而含酰胺基及酯基的聚羧酸减水剂的吸附性能削弱.含酯基官能团的聚羧酸减水剂显著延缓了水泥水化诱导期,相比之下,含磺酸基官能团的聚羧酸减水剂提高了水泥水化加速期的最大水化放热速率.  相似文献   

5.
本文使用马来酸酐、丙烯酸羟乙酯和甲基烯丙基聚氧乙烯醚大单体通过水溶液自由基共聚法合成了一种缓释型聚羧酸减水剂,并讨论了原料配比和合成工艺对减水剂性能的影响.结果表明,当n(MA)∶n(TPEG)∶n(HEA)=3.5∶1∶1,引发剂用量为单体总质量的3.0%,反应温度为80℃,反应时间为4.5h,所合成的减水剂在掺量0.2%时,即使在35℃高温下,水泥净浆流动度初始达258 mm,1.5h时仅损失30 mm,达到了很好的缓释效果.  相似文献   

6.
丙烯酸和马来酸酐是聚羧酸减水剂生产中常用的小单体。对小单体分子结构中的吸附基团进行修饰改性,合成了水溶性丙烯酸酯类化合物和马来酸单甲酯小单体,进而制备了新型聚羧酸减水剂。新型聚羧酸减水剂的应用性能试验表明,该减水剂能显著提高水泥浆的分散保持能力,使水泥浆在较长时间内保持良好的流动性能。实验表明,通过引入改性基团,改变聚羧酸高效减水剂分子结构中主链上吸附基团的组成和分布,可以有效提高聚羧酸减水剂的应用性能。同时,无须对改性小单体进行纯化和后处理,适合工业化生产,也为聚羧酸减水剂的改性研究提供了新的思路。  相似文献   

7.
试验研究了水泥净浆的流变曲线、颗粒堆积密实度、间隙液黏度和聚羧酸减水剂(polycarboxylate superplasticizers,PCE)的吸附量,探究了相同流动度下PCE分子量对水泥净浆流变性能的影响及其内在机理.结果表明:PCE存在一个最佳的分子量范围,使得处于该范围的PCE具有最强的分散能力.在选取的4种PCE中,重均分子量为29.582 kg/mol的PCE减水剂的分散性能最佳.由于桥接作用的存在,分子量大的PCE需要更多地吸附在水泥颗粒表面,以增大颗粒间距,使得浆体的屈服应力(流动度)基本相同.此时,浆体的剩余黏度主要受颗粒堆积密实度与固相体积分数的影响,呈现出随PCE分子量增加而逐渐降低的变化规律.  相似文献   

8.
白炭黑(气相法SiO_2)能够有效改善水泥胶砂力学性能和耐久性,但不容易均匀分散在水泥浆体中,一般需同时配入高效减水剂复合使用。提出利用白炭黑对聚羧酸减水剂进行改性,并将其应用于水泥胶砂制备,一方面保留聚羧酸减水剂的高效减水效应,另一方面将白炭黑以较为均匀的方式引入到水泥基材料中,提高其物理力学性能。研究结果表明:相比于未改性聚羧酸减水剂,在一定条件下得到的白炭黑改性聚羧酸减水剂能够有效改善水泥胶砂工作性能和力学性能。当改性温度为60℃、改性时间为6 h、聚羧酸减水剂与白炭黑减水剂质量比为100:3时,白炭黑改性聚羧酸减水剂对水泥胶砂扩展度和力学强度的改善效果最佳,水泥胶砂扩展度达到197 mm,28 d抗压强度为57.8 MPa。  相似文献   

9.
马来酸类聚羧酸减水剂的合成与性能研究   总被引:1,自引:0,他引:1  
 研究合成了聚乙二醇单甲醚(MPEG)的马来酸单酯(MAMPEG),并将之与丙烯酸(AA)、甲基丙烯酸羟乙酯(HEMA)、乙烯基磺酸钠(SVS)等单体通过自由基水溶液共聚合得到了一系列聚羧酸减水剂,研究了单体加料方式、MPEG相对分子质量、单体组成、引发剂用量等对所得减水剂水泥净浆流动度的影响。结果表明,采用先加MALMPEG、后连续滴加其他单体的加料方式比MALMPEG和其他单体一起滴加的加料方式所得减水剂的性能更好,两者的水泥净浆流动度分别为310 mm和240 mm;随着MPEG相对分子质量增大,所得减水剂水泥净浆流动度先增大后减小,以MPEG-1000为最佳;随着单体组成中酸根离子单体与酯类单体比例的增加,所得减水剂的水泥净浆流动度先增大后减小,当(AA+SVS)/(MALMPEG-1000+HEMA)=1.39(摩尔比)时,所得减水剂的水泥净浆流动度最大;随着引发剂用量增加,所得减水剂水泥净浆流动度先增大后减小,适宜的引发剂用量为单体摩尔总量的1.5%~2.5%。  相似文献   

10.
在聚羧酸减水剂(PCE)制备过程中引入纳米二氧化硅(NS),研究了纳米二氧化硅改性聚羧酸减水剂(NSPCE)的合成条件,并探讨了所合成NS-PCE对水泥净浆流变性能的影响。利用激光粒度分析仪、紫外分光光度计等手段对NS-PCE进行表征,发现NS纳米颗粒可接枝到PCE分子链上,且适量NS的掺入可促进异戊烯醇聚氧乙烯醚(TPEG)单体的转化;随着NS用量的增多,NS-PCE的粒径先增大后保持平稳。NS-PCE较佳合成工艺条件为:合成温度30℃,酸醚比3. 3,NS用量为TPEG质量的10%,氧化剂用量为TPEG质量的0. 15%,链转移剂用量为TPEG质量的0. 35%。合适NS接枝量的NS-PCE可降低水泥浆体屈服应力,从而改善水泥浆体的流变性能。  相似文献   

11.
系统研究了硫酸盐对聚羧酸减水剂吸附-分散性能的影响及其作用机理.通过净浆流动度试验及Marsh时间试验研究了硫酸盐种类及掺量对聚羧酸减水剂分散性能的影响,并通过zeta电位、平衡吸附量及絮凝结构形貌等微观测试手段对硫酸盐影响聚羧酸减水剂分散性的作用机理进行分析.结果表明:随着硫酸根溶出率及溶出速率的增加,硫酸根离子与聚羧酸减水剂间的竞争吸附作用增强;硫酸根离子破坏浆液双电层,促使zeta电位绝对值下降,从而削弱水泥颗粒表面的静电斥力作用,导致水泥浆体絮凝结构数量及强度增大,相同剪切速率对浆体中的絮凝结构破坏程度下降,浆体分散性及流变性下降.  相似文献   

12.
采用水溶液自由基共聚的方法合成聚羧酸高效减水剂, 并通过红外光谱确定了聚羧酸高效减水剂的结构, 考察了聚羧酸高效减水剂侧链的长度、
减水剂在水泥中的掺量、 测试温度等对水泥净浆流动度的影响. 结果表明: 长侧链比短侧链的减水剂流动性更好; 减水剂在水泥中的掺量为其质量分数的0.2%; 随测试温度的升高, 水泥净浆流动度反而降低. 将新合成的聚羧酸高效减水剂与国内外常用产品进行比较, 结果显示性质优良.  相似文献   

13.
从氯离子等温吸附、吸附动力学及吸附热力学3个方面,研究聚羧酸减水剂对水泥浆结合氯离子性能的影响,同时应用XRD微观测试技术研究其作用机理。结果表明:掺入聚羧酸减水剂使水泥浆体结合氯离子能力减弱,且水灰比越小,这种影响作用则越大;掺入聚羧酸减水剂的水泥浆体对氯离子的固化过程,短期内符合准一级动力学方程,表现为物理吸附,长期内符合准二级动力学方程,表现为化学结合,其中随着聚羧酸减水剂掺量的增大,吸附速率逐渐减小;聚羧酸减水剂使水泥浆结合氯离子过程中的自由能变、焓变和熵变都减小,且这个过程是自发、放热的;掺入聚羧酸减水剂主要影响水泥浆体对氯离子的物理吸附,对化学结合没有明显影响。  相似文献   

14.
研究了吸附溶液体系温度、pH值和电解质浓度等对甲基丙烯酸-甲氧基聚乙二醇甲基丙烯酸酯(MAA-MPEGMA)梳形聚羧酸共聚物在水泥颗粒表面的吸附行为的影响。聚羧酸共聚物在水泥颗粒表面的吸附呈Langmuir等温吸附模型。吸附量随着温度的升高而降低,表明聚羧酸共聚物在水泥颗粒表面的吸附是一个放热反应。根据Clausius-Clapeyron方程计算吸附热为17.4kJ/mol。聚羧酸共聚物在水泥颗粒表面的标准吸附自由能<0,吸附是自发的。吸附量随着体系pH值的增大、电解质浓度的增大而减小。红外光谱分析表明,聚羧酸共聚物在水泥颗粒表面的吸附是通过分子结构上羧基与Ca2+间的配合作用实现的,说明这种吸附是一种化学吸附。  相似文献   

15.
系统研究了硫酸盐对掺聚羧酸减水剂水泥浆体流变性及水化性能的影响.结果表明:硫酸盐降低了聚羧酸减水剂在水泥颗粒表面的吸附量,削弱了聚羧酸减水剂对水泥浆体的分散作用.随着硫酸盐掺量的增加,聚羧酸减水剂分散性能下降.少量硫酸盐延缓了水化加速期最大水化放热速率峰的出现,并且提高了最大水化放热速率.而大量硫酸盐则使得水泥水化诱导期缩短,最大水化速率峰显著提前.大量硫酸盐的加入促进了水泥浆体中钙矾石(AFt)的生成,削弱了水化铝酸钙(CAH)的生成.MgSO4对于水泥浆体中水化产物生成的促进作用最明显.掺加MgSO4的水泥水化产物中含有大量细丝状水化硫铝酸盐产物.MgSO4对水泥水化具有显著延缓作用,水化产物结晶成核作用较缓慢,从而使得水化产物生成及分布更加均匀,形状更加细小.  相似文献   

16.
以净浆流动度作为水泥与减水剂相容性的评价指标,试验研究了多种助磨剂对水泥与萘系减水剂或聚羧酸减水剂相容性的影响规律,探讨了缓凝剂和引气剂对水泥与减水剂相容性的改善作用。结果表明,助磨剂对水泥与萘系减水剂相容性的影响较大,对水泥与聚羧酸减水剂相容性的影响较小。缓凝剂和引气剂均能改善水泥与萘系减水剂的相容性,随其掺加量的增加,改善作用逐渐增大。含缓凝剂/引气剂的复合助磨剂对水泥净浆流动度有一定的改善作用,并延缓水泥的凝结时间。含缓凝剂的复合助磨剂对水泥有增强作用,而含引气剂的复合助磨剂会降低水泥的胶砂强度。  相似文献   

17.
为探究泥粉和聚羧酸减水剂对水泥净浆流变性的影响,在掺入聚羧酸减水剂母液和两种复配助剂的基础上,分别外掺1%,2%,3%的高岭土型和蒙脱土型泥粉,并采用Bingham流变模型系统地研究泥粉掺量、种类和聚羧酸减水剂助剂对水泥净浆屈服应力及塑性粘度的影响规律.通过X射线(XRD)小角度衍射、总有机碳(TOC)、Zeta电位对宏观试验结果进行验证.结果表明:增大泥粉掺量可降低聚羧酸减水剂水泥净浆的流变性;高岭土型普通黏土对降低聚羧酸减水剂水泥净浆流变性的程度小于蒙脱土型膨润土;异戊烯基聚氧乙烯醚(TPEG类)保坍型助剂F1对水泥净浆流变性的促进作用大于异丁烯基聚氧乙烯醚(HPEG类)减水型助剂F2.  相似文献   

18.
选取木钠、萘系以及聚羧酸系减水剂,利用 XRD、SEM等测试手段,通过对水泥净浆流动性、凝结时间和强度等宏观性能的研究,分别比较粗集料中的含泥量对其性能的影响规律。结果表明,泥土的掺入缩短了含有 3 种减水剂的水泥净浆的初凝和终凝的时间,且随着含泥量(0% ~ 8%)的增加均呈下降趋势;初始流动度和 1 h 流动度随着含泥量的增加而减小。其中,泥土对聚羧酸减水剂的影响最为明显;含泥量在较小范围之内(w<2%),在一定程度上可以提高净浆试块的 7 d 强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号