首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
以丁苯乳液(SBR)和废弃橡胶粉作为改性组分,研究它们对水泥基材料流变性、力学性能和微观结构的影响。结果表明:SBR能明显增大水泥净浆的流动度并使其表观黏度减小,改善硬化浆体的微观结构,提高硬化浆体的抗折强度和韧性;橡胶粉对硬化水泥浆体的抗压强度有不利影响,但能填充水泥石中的孔隙,提高其韧性;SBR-橡胶粉复合改性时,SBR在水泥颗粒表面成膜,限制熟料矿物的水化,使水化加速期的持续时间延长,水化产物生成量减少,但聚合物膜与水化产物及橡胶粉颗粒形成相互交织的空间网络结构,使浆体更加密实,显著提高水泥浆体的力学性能。  相似文献   

2.
研究了利用钢渣制备磷酸镁水泥基材料的可行性,分析了钢渣对磷酸盐水泥基材料的凝结时间、水化特性、力学性能及微结构的影响机制.结果表明:钢渣对磷酸盐水泥性能的作用规律与粉煤灰相似.掺10%钢渣时,因钢渣引入的CaO及水化生成的氢氧化钙,使得磷酸盐水泥凝结硬化加快,且钢渣自身硬度在一定程度改善了硬化水泥浆体抗压强度;随钢渣掺量增加,起胶结作用的水化产物减少,整个体系孔隙增加、结构疏松,游离氧化钙还会使磷酸盐水泥基材料性能出现劣化.钢渣掺入在浆体中并未观察到新的水化产物,但较高掺量下体系微裂纹增多.  相似文献   

3.
借助电阻率测定仪、XRD等研究了粉煤灰、矿渣或硅灰的掺入对铝酸盐水泥浆体凝结时间、电阻率、化学收缩、抗压强度以及水化产物的影响。结果表明,水泥浆体的凝结时间对应于其电阻率变化曲线的下降段,掺入硅灰能明显缩短水泥浆体的凝结时间。矿物掺合料的掺入可减少水泥浆体的化学收缩,提高其化学收缩速率峰值。相较于硅灰和粉煤灰,掺入矿渣可有效提高硬化水泥浆体在较长龄期时的抗压强度,且有助于水化钙铝黄长石(C_2ASH_8)的生成,具有较强地抑制铝酸盐水泥晶相转变的作用。  相似文献   

4.
采用掺入电石渣并在850℃高温条件下煅烧石英岩尾砂1 h,对石英岩尾砂进行表面改性,利用X线衍射仪(XRD)、扫描电子显微镜(SEM)和能谱仪(EDS)对改性石英岩尾砂的矿物组成和化学成分进行表征,并测定掺入改性石英岩尾砂的水泥浆体的干燥收缩和抗压强度。结果表明:改性石英岩尾砂颗粒表面生成了具有水化活性的β-C2S,水化生成水化硅酸钙(CSH)凝胶,改善了复合水泥浆体中石英岩尾砂颗粒与水泥浆体的界面黏结,提高了水泥浆体的强度,降低了干燥收缩。  相似文献   

5.
为了研究低水胶比下掺玻璃粉水泥浆的浆体力学性能和活性,运用活性因子法排除干扰因素,探讨了低水胶比对不同掺量玻璃粉水泥浆强度的影响规律。结果表明:水化反应早期,玻璃粉的微集料效应与密实填充占据主要地位,玻璃粉的火山灰效应忽略不计。有效水灰比随玻璃粉掺量增加而增加,玻璃粉-水泥浆体中的Ca+浓度降低,生成的C-S-H凝胶数量相对减少,整个复合体系之间的粘结力下降,玻璃粉与水泥的界面效应也相应减弱,从而引起玻璃粉-水泥硬化浆体的抗压强度降低。  相似文献   

6.
为了研究低水胶比下掺玻璃粉水泥浆的浆体力学性能和活性,运用活性因子法排除干扰因素,探讨了低水胶比对不同掺量玻璃粉水泥浆强度的影响规律。结果表明:水化反应早期,玻璃粉的微集料效应与密实填充占据主要地位,玻璃粉的火山灰效应忽略不计。有效水灰比随玻璃粉掺量增加而增加,玻璃粉-水泥浆体中的Ca~(2+)浓度降低,生成的C—S—H凝胶数量相对减少,整个复合体系之间的黏结力下降,玻璃粉与水泥的界面效应也相应减弱,从而引起玻璃粉-水泥硬化浆体的抗压强度降低。  相似文献   

7.
研究了低水灰比硅酸盐水泥的水化程度,并利用XRD和SEM分析了硬化水泥浆体的微观结构。结果表明在低水灰比条件下,水泥的水化程度较低,其硬化水泥浆体中存在较多的未水化水泥;同时由于自身的密实性增强和体系的低孔隙率,使水泥水化产物的结晶、生长情况也受到影响。  相似文献   

8.
研究了低水灰比硅酸盐水泥的水化程度,并利用XRD和SEM分析了硬化水泥浆体的微观结构。结果表明在低水灰比条件下,水泥的水化程度较低,其硬化水泥浆体中存在较多的未水化水泥;同时由于自身的密实性增强和体系的低孔隙率,使水泥水化产物的结晶、生长情况也受到影响。  相似文献   

9.
医疗垃圾焚烧灰电弧炉熔渣的水化特性   总被引:3,自引:0,他引:3  
为考察医疗垃圾焚烧灰电弧炉熔渣用作水泥掺合料的可行性,研究了熔渣的掺入对普通硅酸盐水泥水化特性的影响.结果表明:熔渣具有潜在的活性,适量掺入熔渣能降低水泥浆体中Ca(OH)2含量,增加水化产物C-S-H的数量,改善水泥浆体微观结构;但若熔渣掺量过多,则水泥熟料相对较少,使熔渣的活性难以完全被激发,导致熔渣水泥强度降低;熔渣水泥早期(7 d)抗压强度较低,但后期强度增加明显,掺渣量10%的熔渣水泥60 d的抗压强度达到普通硅酸盐水泥的103%,熔渣的掺量宜控制在10%左右.  相似文献   

10.
为了研究水转化为冰所带来的体积膨胀对水泥浆体的微观结构的危害,量化微观结构的内部损伤,建立了一个饱水状态下水泥浆体的冰冻破坏模型.首先使用模拟水泥浆体微观结构的数值模型(HYMOSTRUC)生成一个模拟结构,根据这个模拟结构中的孔结构,分析水分在孔隙中发生的相转变;将含有冰、水和水化产物的水泥浆体微观模拟结构转变为三维...  相似文献   

11.
采用超声波分散方式将纳米CaCO_3掺入水泥基材料,研究了不同掺量纳米CaCO_3对水泥基材料性能与结构的影响,并利用X射线衍射和扫描电镜分析其影响机理.结果表明:掺入纳米CaCO_3后,水泥基材料流动度降低,浆体表观密度增大,抗折和抗压强度提高.纳米CaCO_3掺量为1.5%(质量分数)时,对水泥基材料的力学性能提高最为显著,纳米CaCO_3掺量过多则不利于强度发展.纳米CaCO_3的掺入会加速水泥的水化,早期使水化产物Ca(OH)_2等增加;纳米CaCO_3改善了界面结构和水泥石结构,使水泥基材料的结构变得更加均匀密实.结果显示纳米CaCO_3掺入后对水泥基材料的力学性能与结构有利.  相似文献   

12.
矿渣掺量对阿利特-硫铝酸钡钙水泥性能的影响   总被引:2,自引:0,他引:2  
研究矿渣掺量对阿利特-硫铝酸钡钙水泥性能的影响,当质量分数掺量为10%时,阿利特-硫铝酸钡钙水泥3d、28d的强度分别达到44.5MPa和77.6MPa.采用XRD、SEM等方法研究阿利特-硫铝酸钡钙水泥水化产物的组成、结构和形貌,并对该水泥的水化机理进行探讨.结果表明:当矿渣掺量质量分数为10%时,促进了该水泥的水化,有利于水泥强度的提高.  相似文献   

13.
利用前期合成的阿利特-硫铝酸钡钙水泥,应用XRD、SEM-EDS等研究了随石膏掺量的改变对新型胶凝材料阿利特-硫铝酸钡钙水泥水化程度及水化浆体组成的影响.研究结果表明:随石膏掺量增加,水化浆体的水化程度大致趋势是先增加后降低;阿利特-硫铝酸钡钙水泥最佳铝硫比为1.0/1.0,此时硬化浆体在标准稠度加水量下1d、3d和28d龄期的水化程度分别达到48.3%、57.6%和75.3%.XRD及SEM-EDS分析表明在最佳铝硫比1d、3d龄期时水化产物就已大量形成,结构致密.  相似文献   

14.
通过对胶凝材料强度、水化热的测定和对水化产物种类及表观形貌的分析,探讨了缓凝剂和钢渣掺量对碱激发钢渣矿渣胶凝材料性能的影响,并对其水化特性进行了研究.结果表明:钢渣掺量为40%、矿渣掺量为60%时,外掺6%水玻璃激发剂和1%的K缓凝剂,所制得的胶凝材料的凝结时间和强度可以达到42.5R普通硅酸盐水泥的技术要求;碱激发钢渣矿渣胶凝材料的放热特性与碱激发矿渣胶凝材料类似,具有放热量小的特点;钢渣与矿渣组合有利于胶凝体系水化进程的发展,两者具有相互促进的作用.  相似文献   

15.
以纯化学试剂配料,经 X 射线衍射仪(XRD)、扫描电子显微镜(SEM)和强度测试,研究铁相 C6A2F、C4AF、C6AF2和 C2F 对硫铝酸钡钙水泥熟料的煅烧及性能的影响。结果表明:各生料配比试件在 1 350oС 时,熟料矿物形成较好;随铁相中Al 与 Fe 的摩尔比的减小,熟料外观颜色呈浅绿色→ 深绿色→ 黑绿色变化;熟料矿物主要生成菱形十二面体的硫铝酸钡钙和卵粒状的硅酸二钙;铁相能够促进 Ba2 +取代 Ca2 +;主要水化产物为水化硫铝酸钡钙、BaSO4和水化铝酸钙。铁相组分为 C4AF时,其 1 d 和 3 d 抗压强度分别为 73. 2 MPa 和 97. 9 MPa。  相似文献   

16.
碱-粉煤灰-矿渣水泥作GRC胶结材的试验研究   总被引:2,自引:0,他引:2  
研究了影响碱-粉煤灰-碱矿渣水泥(AAFSC)的强度的因素.测定了其凝结时间。结果表明:当水玻璃掺量为3%,硅酸盐水泥熟料为5%以及适量减水剂,其28d抗压强度大于50MPa,且凝结时间正常。AAFSC浆体浸泡液的pH值随着水化龄期的生长而降低,SEM照片显示抗碱玻璃纤维在从FSC浆体中所受侵蚀极小。  相似文献   

17.
对钢渣作为一种混合材在复合水泥中的综合利用进行了研究,并通过X线衍射(XRD)、扫描电镜(SEM)、水化热测试、孔结构测试等现代物相检测手段,揭示钢渣复合水泥微观结构与宏观性能之间的内在联系。结果表明:钢渣能显著降低水泥的水化热,降低水泥的标准稠度用水量;钢渣水泥浆体线膨胀率很小,均没有超过0.1%,体积稳定性良好;一定掺量混合材能有效降低浆体孔隙率,改善孔径分布,提高浆体致密度;复合掺加20%钢渣、10%粉煤灰时,水泥的28 d抗折、抗压强度分别达到了8.3、48.9 MPa;钢渣和粉煤灰复合掺加有利于水泥强度发展。  相似文献   

18.
石膏对硫铝酸盐水泥水化特性的影响   总被引:1,自引:0,他引:1  
研究了无水石膏及脱硫石膏对硫铝酸盐水泥抗压强度、干燥收缩率、早期水化放热及浆体组成的影响.结果表明:石膏能加速硫铝酸盐水泥的早期水化,低掺量(≤20%,质量分数)时1 d抗压强度提高,干燥收缩有所降低;随石膏掺量增加,3 d和28 d抗压强度先增后减;掺量过高时硬化浆体的后期强度甚至会倒缩;抗压强度与钙矾石生成量并无直接关联,与铝胶量成正相关.脱硫石膏可替代无水石膏配制出更优良的硫铝酸盐水泥,具有广阔前景.  相似文献   

19.
固井水泥石微结构发育规律是固井工艺设计和固井质量评价的重要参考依据.以HYMOSTRUC3D软件为基础,建立了水泥水化模型,获取了CH[CH表示Ca(OH)2晶体]含量和抗压强度,并对实验结果进行了对比,模拟结果与实验结果的偏差基本都在10%以内.然后,基于水泥水化模型获取了不同水灰比(W/C,W/C=0.4、0.44、0.5、0.6、0.8、1.0、2.0)和水化龄期对固井水泥浆水化过程中C3S(3CaO·SiO2),C2S(2CaO·SiO2),C3A(3CaO·Al2O2),C4AF(4CaO·Al2O3·Fe2O3),C-S-H(Ca5Si6O16(OH)·4H2O)CH、孔隙率、孔径分布、抗压强度和三维结构等的影响.同时,采用Ryshkewitch方程、Schiller方程和二次线性方程重点讨论了抗压强度与孔隙率的关系.结果表明:在水泥水化过程中,随水化反应的进行,水泥石孔隙率逐渐减小,抗压强度增大;随水灰比增大,粗孔含量增加,细孔占比减小,孔隙率增大,孔径分布变宽,抗压强度减小.采用Ryshkewitch方程、Schiller方程和二次线性方程拟合抗压强度与总孔隙率和毛细孔隙率的相关系数都达到0.92以上,分别为0.96、0.92、0.95和0.98、0.97、0.98;毛细孔隙率是固井水泥石强度发展的主要影响因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号