首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
泡沫填充波纹夹芯梁的面内压缩破坏模式分析   总被引:1,自引:0,他引:1  
为了提高波纹夹芯结构作为高铁车厢或油罐车罐体容器外壳在面内压缩载荷下的结构稳定性,提出了在波纹芯体空隙中填充聚酯泡沫的设想,理论研究了泡沫填充波纹夹芯梁的面内压缩破坏行为,同时对面内压缩破坏进行了数值有限元验证。泡沫填充波纹夹芯梁面内压缩下的主要破坏模式为宏观弹塑性屈曲、面板弹塑性起皱2种模式。结合宏观尺度上芯体的均匀化等效弹性常数,建立宏观屈曲破坏的理论模型;将泡沫等效为Winkler弹性基,建立面板起皱破坏的理论模型。对304不锈钢波纹夹芯板和Rohacell 51泡沫填充材料,构建结构的破坏模式图,有限元计算结果从破坏模式和临界载荷2个方面验证了理论预测的可靠性。在此基础上,对泡沫填充波纹夹芯结构进行质量最小优化设计,获得结构的最优化几何尺寸。综合考虑承载、能量吸收、减振、隔热等多功能特性,相较于空心波纹夹芯结构和金字塔点阵夹芯结构,泡沫填充波纹复合结构具有潜在的重要工程应用价值。  相似文献   

2.
碳纤维夹芯结构常用作航空航天、交通车辆等运载工具的主承力结构,这类结构在服役过程中容易发生界面开裂,继而引发大面积脱粘、面板局部屈曲等破坏模式,严重影响结构的安全.使用芳纶短纤维对碳纤维夹芯结构的面-芯界面进行增韧,在夹芯结构制备过程中,在界面加入低密度芳纶短纤维薄膜,通过芳纶短纤维的桥联作用,提高界面的粘接性能.首先通过弯曲和压缩实验,对比了增韧和未增韧夹芯结构的荷载-位移曲线、破坏模式等响应,发现芳纶短纤维界面增韧可以大幅提高碳纤维夹芯结构的各项力学性能.其次,基于非对称双悬臂梁实验和扫描电镜观测,分析了芳纶短纤维的增韧效果和增韧机理.最后,基于均匀弹性材料裂纹的奇异性解和界面裂纹尖端的位移震荡解,建立了考虑界面裂纹尖端复杂应力场的扩展有限元单元,模拟了碳纤维夹芯试件的界面开裂过程.以上研究工作有助于揭示芳纶短纤维增韧界面的断裂机理,建立界面增韧参数设计方法,提高碳纤维夹芯结构的力学性能,并为结构的健康诊断和工艺改进提供科学依据.  相似文献   

3.
含面芯脱粘缺陷复合材料夹芯梁屈曲失效研究   总被引:1,自引:0,他引:1  
为研究面芯脱粘缺陷对复合材料夹层结构屈曲特性的影响,对含贯穿矩形面芯脱粘缺陷的复合材料夹芯梁进行了试验和仿真研究.轴向压缩试验发现:试件破坏模式为混合屈曲失效,承载过程可划分为轴向压缩、局部屈曲、混合屈曲和坍塌失效四个阶段.在试验基础上,基于Abaqus非线性弧长算法,对复合材料夹芯梁的极限载荷及后屈曲路径进行模拟.采用三维内聚力单元模拟预制脱粘缺陷,从破坏模式和极限载荷两个方面与试验结果进行对比,误差为6.51%,验证了数值计算方法的可靠性.有限元分析发现:随芯层模量增加,极限荷载先非线性增长后线性增长;当缺陷因子为0.052时,极限荷载为完整结构的80%,为确保结构的承载特性,应在缺陷因子达到0.05前及时进行脱粘区域修补.  相似文献   

4.
实验研究了泡沫铝夹芯梁结构在不同温度下的3点弯曲力学性能.通过引入Gibson模型构建夹芯梁架构在3点弯曲作用下的失效模式图,并将失效模式图扩展到高温情况下,得到泡沫铝夹芯梁的初始失效模式图随温度的变化趋势.结果发现,其他因素不变,随着温度的升高,夹芯梁结构更容易发生面板屈服失效模式,芯层剪切模式涉及的范围被大大压缩.根据修正的Gibson模型预测的夹芯梁结构的极限载荷和实验结果所得极限载荷比较发现,芯层剪切模式分析结果和实验数据很好地吻合,说明泡沫铝夹芯梁的最终失效破坏主要是由于芯层剪切引起的.  相似文献   

5.
夹芯结构具有优良的力学性能和多功能性,是一类良好的冲击防护材料。以编织玻璃纤维增强聚丙烯复合材料蜂窝夹芯板为研究对象,采用JSL-3000落锤式示波冲击试验机研究了其结构在低速冲击下的抗冲击特性。试验采用固支的边界条件,通过控制落锤下落高度实现不同冲击能量对结构低速冲击响应的影响;并在相同的冲击能量下,研究了蜂窝夹芯结构芯层高度和芯层层数对结构抗冲击性能的影响。利用ABAQUS有限元软件建立了蜂窝夹芯板的低速冲击模型与试验结果进行对比,通过对获得的载荷时间曲线和结构失效模式的分析,发现结构的损伤以上面板的凹陷和芯层的压溃为主,在面板未发生穿透的情况下结构会发生大幅度回弹。  相似文献   

6.
空心及PMI泡沫填充铝波纹夹芯梁冲击性能实验研究   总被引:2,自引:0,他引:2  
为了提高油罐车罐体在冲击载荷下的强度和耐撞性,提出了两种三明治结构:空心和PMI泡沫填充率波纹夹心结构,来代替传统的均质结构,通过泡沫块冲击实验,对两种构型的三明治夹芯梁的冲击性能进行了研究。通过高速摄影观察了夹芯梁的变形过程,得出了在不同冲击速度下同质量不同芯体结构的夹芯梁后面板所产生位移的时程曲线,考察了两种类型夹芯梁在冲击载荷下的后面板中点位移及各自的变形特点。实验结果表明:空心波纹夹芯梁在速度较高的冲击载荷作用下,前面板在冲击区域发生撕裂,波纹芯体发生较大幅度的压缩;相对于空心夹芯梁,PMI泡沫填充夹芯梁前面板的撕裂和芯体的压缩程度大幅减小,但后面板中点位移较空心夹芯梁更大。由于结构的撕裂在罐车的行进过程中容易扩展并至更严重的破坏,因而填充夹芯结构相对空心结构更具优势。  相似文献   

7.
对不同构型薄蜂窝复合材料夹芯结构侧向压缩响应进行了试验研究,研究参数包括芯材高度、芯材密度和面板刚度。结果表明,蜂窝芯材高度严重影响蜂窝结构失稳载荷和峰值载荷,而上下面板的刚度不对称性会严重降低失稳载荷却对峰值载荷影响不大。薄蜂窝复合材料夹芯结构的整体破坏过程与芯材密度、芯材高度均有关系,而受刚度不对称性影响不大。薄蜂窝复合材料夹芯结构在侧向压缩载荷下的主要失效模式是蜂窝芯材剪切破坏,通过高速摄像机对蜂窝局部进行观察,发现失效起始于单个蜂格的剪切破坏,导致其高度降低,继而引起上下两侧蜂格破坏,并且迅速扩展到上下约3个蜂格,导致载荷突降。若继续加载,破坏继续向两侧蜂格扩展,且载荷基本不变。  相似文献   

8.
运用AUTODYN对波纹夹芯板在爆炸载荷作用下的动力响应进行了数值模拟。建立了包括炸药、空气、夹芯板结构及支座在内的三维有限元计算模型,分析了爆炸载荷作用下冲击波与结构的流固耦合过程以及波纹夹芯板的动力响应过程,研究了面板、芯层的厚度和屈服强度对夹芯板挠度和能量吸收的影响。数值模拟表明:波纹板在爆炸载荷作用下的动力响应可以分为冲击波与结构的流固耦合阶段、芯层的压缩以及板的整体动力响应等3个阶段;由于波纹芯层在垂直于波纹的方向上其抗弯刚度较大,在结构平行于波纹的边界处更容易受载荷作用而出现褶皱现象;随着面板、芯层壁厚及屈服强度的增大,后面板的最大挠度和夹芯板的整体吸能也随之减小。实际应用中需对芯层、面板的厚度及屈服强度进行合理的设计,使结构既经济又能满足服役环境。  相似文献   

9.
蔡婧 《科技信息》2013,(22):380-381
本文对蜂窝和泡沫夹芯的纤维增强复合材料夹层板进行剪切载荷下的强度试验,分析试验载荷—位移曲线及失效模式,并进行有限元分析,计算的破坏载荷和失效模式也与试验结果较吻合,为工程设计与应用提供了试验和分析依据。  相似文献   

10.
利用实验结合数值计算的方法研究蜂窝铝夹芯结构在受冲击载荷作用时的动力学特性;采用落锤装置对蜂窝铝夹芯结构在受到冲击载荷时的变形进行研究,建立有限元模型,并与实验值进行对比;分析落锤冲击破坏过程中蜂窝铝夹芯结构面板与蜂窝芯子在不同阶段的应力分布,讨论不同冲击速度对蜂窝铝夹芯结构面板凹痕深度与面积的影响,以及实验过程中落锤与试件之间的接触力和能量吸收效果。结果表明,随着落锤冲击速度的增大,面板和蜂窝芯子在最大凹痕深度处的应力峰值逐渐增大,应力波辐射范围增大,蜂窝铝夹芯结构吸收的能量也相应增大。  相似文献   

11.
利用CONWEP计算模型对铝蜂窝夹芯结构的抗爆性能进行了有限元分析,以背板最大变形和夹芯层比吸能作为抗爆性能指标,根据不同基体材料的组合结构建立了铝蜂窝夹芯结构的基准模型.基于基准模型,定量研究了铝蜂窝夹芯结构各部分结构参数和蜂窝胞元类型对其抗爆性能的影响规律.结果表明面板材料采用Al2024T351,背板材料采用RHA的组合结构具有良好的抗爆性能;相比于背板厚度变化,面板厚度的变化对铝蜂窝夹芯结构抗爆性能指标的影响更显著.应用构建代理模型的方法对铝蜂窝夹芯结构的抗爆性能进行了多目标优化设计,使铝蜂窝夹芯结构的抗爆炸冲击波性能得到了明显改善,这对抗爆结构的工程设计有一定指导意义.  相似文献   

12.
为研究薄面板复合材料蜂窝夹层结构冲击穿透损伤的失效机理,对具有3层平面编织复合材料面板的蜂窝夹层板试验件进行了多种能量的冲击试验.并在考虑了面板材料的渐进失效以及面内剪切非线性应力应变关系基础上,运用LS-DYNA有限元分析软件建立了夹层板的数值模型,用以分析失效过程.结果 表明,数值模拟结果与试验结果一致.上面板穿透或整体贯穿时面板均呈花瓣状裂开,前者蜂窝以压溃损伤为主,后者则额外产生蜂窝芯体与下面板间的界面脱粘以及蜂窝壁的断裂损伤.无面板穿透时,冲击接触力将保持纤维断裂损伤阈值力大小直至冲头回弹;面板穿透则使冲击区域刚度下降,接触力随之下降,其中板整体贯穿时接触力会出现两个峰值.薄面板复合材料蜂窝夹层结构冲击穿透过程中的主要能量耗散在复合材料面板的纤维拉伸断裂,蜂窝的压溃和断裂过程也消耗部分能量.  相似文献   

13.
采用有限元法(FEM)分析泡沫夹层结构复合材料机翼准静态三点弯曲载荷力学行为与破坏形态.在有限元模型中,复合材料蒙皮为Hashin失效准则弹性壳单元模型,铺层结构为[0/90/0/±45]s,其芯层泡沫为弹塑性可压缩泡沫实体单元模型.利用有限元模拟软件ABAQUS10.1模拟机翼在弯曲载荷下的破坏形态,分析得到其破坏机理.通过最大受力值以及模型应力云图与实际弯曲试样破坏情况进行比较.结果表明,机翼最大承受力模拟值比试验值偏大,但相对误差很小,为3.31%;模型应力集中区域与试样实际断裂区域相吻合,证明了本有限元模型可以有效地用于预测泡沫夹层结构复合材料机翼在三点弯曲载荷作用下的失效模式以及失效强度.  相似文献   

14.
复合材料蜂窝夹芯板低速冲击损伤研究   总被引:2,自引:2,他引:0  
通过三维动力学有限元建立了复合材料蜂窝夹芯板在低速冲击作用下的渐进损伤分析模型。该模型中将蜂窝夹芯等效为均匀的正交各项异性材料。采用基于应变的Hashin三维失效准则和Yeh分层失效准则对面板损伤进行判断。使用部分刚度折减对损伤材料性能进行退化。利用用户子程序将损伤判据和刚度折减方案引入到ABAQUS软件中。模拟了复合材料蜂窝夹芯板低速冲击损伤渐进过程,并与试验结果进行验证。证明了该方法的合理性,最后讨论了各种参数对冲击响应和冲击损伤的影响。  相似文献   

15.
通过三点弯曲实验研究,得到了碳纤维/PMI泡沫夹芯复合材料的弯曲性能以及破坏机理。并采用逐渐累积损伤方法对泡沫夹芯结构弯曲载荷进行了预测,结果发现:模拟与试验结果较吻合,弯曲载荷误差为6.31%。研究结果表明:有限元数值模拟能够准确地得到泡沫夹芯复合材料在压缩过程中的损伤扩展,并最终预测碳纤维/PMI泡沫夹芯复合材料的最大破坏载荷和破坏趋势。  相似文献   

16.
采用弹道摆锤测试系统对铝波纹、铝蜂窝夹芯板进行了爆炸冲击加载实验。通过改变炸药量及炸药位置实现对结构不同冲量的加载,分析对比了不同冲量作用下两种金属夹芯板的变形/失效模式。实验结果表明,爆炸载荷作用下波纹芯层和蜂窝芯层表现出的变形失效模式较为相似,包括中心压实区域,部分压实区域以及边界处的剪切变形;但在冲量较大时,波纹芯层在边界处的剪切变形更为明显。在载荷条件及芯层平均密度一定的情况下,由于梯形波纹芯层较蜂窝芯层较弱的能量吸收能力,波纹夹芯板将产生更大的残余挠度。实验结果对波纹夹芯板和蜂窝夹芯板在抗爆结构中的选择应用具有一定的参考价值。  相似文献   

17.
研究了蜂窝夹层结构在不同夹芯厚度和空腔真空度下的隔声特性.就平面声波垂直入射的情况,对蜂窝夹层结构的隔声特性进行了理论分析,并采用有限元软件,对不同夹芯厚度与空腔真空度下的结构隔声特性进行了数值模拟.结果表明:提高蜂窝夹层结构中夹芯厚度与空腔真空度,能够有效改善蜂窝夹层结构在不同频段内的隔声性能,尤其体现在中高频段.在蜂窝夹层用于隔声结构设计与使用过程中,针对不同的噪声频谱需求,采用有限元计算的方法选择蜂窝夹层结构的夹芯厚度与空腔真空度,可以达到所需的隔声要求.研究结果对轻薄隔声结构的设计具有一定的指导意义.  相似文献   

18.
采用三点弯曲加载方式对闭孔泡沫铝和铝板胶合成的三明治梁力学性能进行了实验研究.通过实验分析不同的芯材厚度、弯曲加载跨距以及胞孔形状对三明治梁极限承载力以及结构失效模式的影响.结果表明:三明治梁的抗弯极限承载能力随着芯材厚度的增加而增加;结构的失效模式与加载跨距及芯材的厚度有关,失效模式主要有压痕、芯材与面板断裂、面板皱褶及脱黏等形式;规则形状的胞孔芯材与不规则形状的胞孔芯材构成的同样尺寸的三明治梁相比:前者的极限承载力更大,能量吸收能力更高.  相似文献   

19.
为了研究缝合三明治热防护结构应用于高超声速技术领域时的热力性能及内在机制,基于代表性体积单元模型建立了模拟热力联合载荷作用下响应的有限元仿真分析方法,分析了结构内部的温度和应力分布,以及随载荷历程的演化情况。研究结果表明:加热面温度为1 073 K时,缝合三明治热防护结构能够有效起到隔热作用;缝线作为“热通道”对隔热性能的削弱影响不明显,但不同组分间的热膨胀不匹配会引起应力集中;面板和夹芯界面处的拉应力以及夹芯内部较高的应力水平可能会导致结构损伤和失效。  相似文献   

20.
为了研究某民机雷达罩结构的抗鸟撞性能,基于ABAQUS建立了采用纤维增强非线性动力本构的雷达罩模型,综合考虑了复合材料与泡沫芯材的非线性行为与应变率效应。该文通过仿真模拟,分析了面板材料(包括复合材料和泡沫芯材)是否考虑非线性与应变率效应、夹芯结构铺层顺序与角度,以及前后面板厚度比对结构鸟撞响应失效行为的影响。结果表明:纤维增强复合材料的非线性动力本构能够很好地描述雷达罩复合材料结构在动态加载下的应变率强化效应。不同铺层角度下的雷达罩面板的破坏形式基本相同,其最主要的失效形式是基体拉伸破坏,而前后面板铺层顺序为[0/-45/45]/[45/-45/0],且前后面板层厚比接近1的模型具有较好的吸能效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号