首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
首次研究了以2'-(2-呋喃亚甲基)水杨酰腙Schiff碱铜(Ⅱ)配合物[Cu(Ⅱ)-THBH]为中性载体的PVC膜电极,该电极对硫氰酸根离子(SCN-)具有优良的电位响应特性并呈现出反Hofmeister选择性行为,其选择性次序从大到小为:SCN-,Sal-,ClO-4,I-,Br-,NO-3,Cl-,NO-2,SO2-3,SO2-4,H2PO4-.电极在pH5.0的磷酸盐缓冲体系中,对SCN-在1.0×10-1~5.0×10-6mol/L浓度范围内呈近能斯特响应,斜率为-53.4 mV/dec(25℃),检测下限为1.2×10-6mol/L.利用交流阻抗和紫外可见光谱初步研究了阴离子与载体的作用机理,结果表明配合物中心金属原子的结构以及载体本身的结构与电极的响应行为之间有非常密切的构效关系.该电极具有响应快、重现性好、检测限低、制备简单等优点.将电极初步应用于实际样品废水分析,结果与HPLC法一致.  相似文献   

2.
首次研究了以2'-(2-呋喃亚甲基)水杨酰腙Schiff碱铜(Ⅱ)配合物[Cu(Ⅱ)-THBH]为中性载体的PVC膜电极,该电极对硫氰酸根离子(SCN-)具有优良的电位响应特性并呈现出反Hofmeister选择性行为,其选择性次序从大到小为SCN-,Sal-,ClO-4,I-,Br-,NO-3,Cl-,NO-2,SO2-3,SO2-4,H2PO4-.电极在pH5.0的磷酸盐缓冲体系中,对SCN-在1.0×10-1~5.0×10-6mol/L浓度范围内呈近能斯特响应,斜率为-53.4 mV/dec(25℃),检测下限为1.2×10-6mol/L.利用交流阻抗和紫外可见光谱初步研究了阴离子与载体的作用机理,结果表明配合物中心金属原子的结构以及载体本身的结构与电极的响应行为之间有非常密切的构效关系.该电极具有响应快、重现性好、检测限低、制备简单等优点.将电极初步应用于实际样品废水分析,结果与HPLC法一致.  相似文献   

3.
首次研究了以2′(2呋喃亚甲基)水杨酰腙Schiff碱铜(Ⅱ)配合物[Cu(Ⅱ)-THBH]为中性载体的PVC膜电极,该电极对硫氰酸根离子(SCN-)具有优良的电位响应特性并呈现出反Hofmeister选择性行为,其选择性次序从大到小为:SCN-,Sal-,ClO4-,I-,Br-,NO3-,Cl-,NO2-,SO23-,SO24-,H2PO4-.电极在pH5·0的磷酸盐缓冲体系中,对SCN-在1·0×10-1~5·0×10-6mol/L浓度范围内呈近能斯特响应,斜率为-53·4mV/dec(25℃),检测下限为1·2×10-6mol/L.利用交流阻抗和紫外可见光谱初步研究了阴离子与载体的作用机理,结果表明配合物中心金属原子的结构以及载体本身的结构与电极的响应行为之间有非常密切的构效关系.该电极具有响应快、重现性好、检测限低、制备简单等优点.将电极初步应用于实际样品废水分析,结果与HPLC法一致.  相似文献   

4.
以水杨醛缩硫代氨基脲合铜(Ⅱ)为中性载体,制备了一种对碘离子(I-)具有优良的电位响应特性并呈现出反Hofmeister选择性行为的离子电极,其选择性大小依次为:I-,Sal-,ClO-3,H2PO-4,2,SO2-4,SCN-,Cl-,NO-3,NO-SO2-4.该电极在pH2 0的磷酸盐缓冲体系中具有最佳的电位响应,在1 0×10-1~8 0×10-5mol/LI-浓度范围呈近能斯特响应,斜率为-54 0mV/pI-(25℃),检测下限为4 0×10-5mol/L.采用交流阻抗和紫外光谱分析技术研究了配合物中心金属原子以及配合物本身的结构对电极电位响应行为的作用机理.将该电极用于药物含碘量的测定,获得满意的结果.  相似文献   

5.
新型双核锰金属配合物中性载体水杨酸根离子电极的研究   总被引:8,自引:4,他引:8  
首次研究了基于N,N双水杨醛缩乙二胺双核锰(Ⅳ)[Mn2(Salen)2O2]为中性载体的PVC膜电极.该电极对水杨酸根(Sal-)具有优良的电位响应性能和选择性,并呈现出反Hofmeister选择性行为,其选择性次序从大到小为Sal-,ClO-4,SCN-,I-,NO-3,Br-,SO2-3,NO-2,SO2-4,Cl-.在pH=5.0的磷酸盐缓冲体系中,电极电位呈现近能斯特响应,线性响应范围为9.0×10-6~1.0×10-1mol/L,斜率为-53.6mV/dec(20℃),检测下限为7.0×10-6mol/L.采用交流阻抗技术和紫外可见光谱技术研究了电极响应机理.该电极可用于阿司匹林药品分析.  相似文献   

6.
研究了基于水杨醛缩碳酰胺合铜(Ⅱ)[Cu(Ⅱ)-SAU]、水杨醛缩碳酰胺合镍(Ⅱ)[Ni(Ⅱ)-SAU]的金属配合物为中性载体的阴离子选择性电极.实验结果表明:以水杨醛缩碳酰胺合铜(Ⅱ)[Cu(Ⅱ)-SAU]为中性载体的离子选择性电极对水杨酸根离子(Sal-)具有良好的电位响应特性,且呈现反Hofmeister行为,其选择性序列从大到小为:Sal-,ClO4-,I-,SCN-,NO2-,NO3-,Br-,SO24-,SO23-,Cl-.在pH=4·0的磷酸盐缓冲体系中该电极具有最佳的电位响应,在1·0×10-1~9·6×10-6mol/L浓度范围内呈近能斯特响应,斜率为-51·4mV/dec(25℃),检测下限为8·1×10-6mol/L.采用交流阻抗研究了电极的响应机理,并将电极用于样品分析,结果比较满意.  相似文献   

7.
首次研制了基于二苯甲酮缩氨基硫脲合汞(Ⅱ)金属配合物[Hg(Ⅱ)-BBKT]为中性载体的阴离子选择性电极.该电极对碘根(I-)具有优良的电位响应性能,并呈现出反Hofmeister选择性行为,其选择性次序为:I->CIO4->SCN->Sal->Br->NO3->Cl->NO2->SO32->SO42-.在pH2.5的磷酸盐缓冲体系中,电极电位呈现近能斯特响应,线性响应范围为2.9×10-5~1.0×1mol-1mol/L,斜率为-51.2 mV/dec(20℃),检测下限是1.0×10-5mol/L.采用紫外可见光谱技术研究了电极的响应机理,结果表明配合物中心金属原子的结构以及载体本身的结构与电极的响应行为之间有非常密切的构效关系.井将该电极用于实验室废水碘离子检测,其结果令人满意.  相似文献   

8.
本文利用循环伏安法,在裸玻碳电极上成功地制备了聚茜素红薄膜修饰电极(PARSE),详细研究了该修饰电极对NO-2的电催化作用.实验结果表明,PARSE对NO-2具有良好的电催化作用.催化峰电流与NO-2浓度在2.5×10-3~2.5×10-5mol/L之间呈良好的线形关系,线性相关系数为0.999 6,检测限可达5×10-6mol/L,用于腌菜样品中NO-2含量的测定,取得满意结果.  相似文献   

9.
以多壁纳米碳管(MWCNTs)为电子媒介体和酶的吸附载体,利用层层累积的自组装技术固定葡萄糖氧化酶(GOx)的多层(MWCNTs/GOx)n复合薄膜修饰电极,制备了一种新型葡萄糖生物传感器。结果表明:传感器对葡萄糖的响应电流值随着MWCNTs/GOx复合薄膜层数的不同而变化,当MWCNTs/GOx复合薄膜的层数为6时,响应电流值达到最大。(MWCNTs/GOx)6复合薄膜修饰的葡萄糖生物传感器对3×10-2mol/L葡萄糖的响应电流为1.63μA,响应时间仅为6.7 s。该生物传感器检测的线性范围为5×10-4~1.5×10-2mol/L,最低检测浓度可达0.9×10-4mol/L。  相似文献   

10.
由于水杨酸在医药及化妆品等方面广泛应用,其使用过量又会造成极大危害,因此,设计一种性能优异的水杨酸根离子选择性电极具有重要的意义。本文研制了一种以水杨醛缩1,3-丙二胺合铜(Ⅱ)([Cu(Ⅱ)-Schiff])为中性载体的PVC膜阴离子选择性电极,采用电化学方法对其性能进行表征,选用紫外光谱研究了该电极对Sal-的响应机理,并将电极初步应用于实际样品分析。结果表明:此电极对Sal~-具有较好的电位响应,其在pH=5.0的磷酸盐缓冲体系中性能最佳,响应范围为1.0×10~(-1)~1.0×10~(-6)mol/L,检测下限为2.3×10~(-7)mol/L,斜率为-59.6 mV/dec,响应时间为t_(9596)为17 s,电极具有至少2个月的使用寿命,该电极用于阿司匹林及复方阿司匹林药片中水杨酸的测定是可行的。因此,本实验设计的离子选择性电极在测定药片里水杨酸含量方面具有一定的应用前景。  相似文献   

11.
制备了醋酸纤维素(CA)/普鲁士蓝(PB)复合膜修饰玻碳电极(CA/PB/GCE),用于过氧化氢(H2O2)检测.该修饰电极在中性缓冲液中对H2O2表现出良好的催化响应.0.05mol/L的PBS缓冲液中(pH7.0,0.1mol/LKCl作为支持电解质),在-0.2V的恒定电势下,使用该修饰电极采用时间电流法测定不同浓度的H2O2,在1.0×10-5~2.5×10-4mol/L的浓度范围内,响应电流和H2O2浓度间呈现出良好的线性关系,线性相关系数0.9994,检出限达2.2×10-6mol/L(信噪比为3),灵敏度为190mA·L·cm-2·mol-1.此外,该电极还表现出良好的操作稳定性.  相似文献   

12.
报道了基于钴希夫碱双水杨醛缩二亚丙基三胺合钴(II)(Co(II)-BSADDPA)为载体的溶剂聚合膜阴离子选择性电极,该电极对高氯酸根离子的电位响应具有优良的选择性和灵敏度.在pH值为5 5的缓冲溶液中,电极电位呈现近能斯特响应,线性响应范围为8×10-6~1×10-1mol/L,斜率为59 4mV/dec,检测下限为5×10-6mol/L.采用交流阻抗和光谱分析技术研究了电极的响应机理并将电极用于花炮中高氯酸根离子的检测,结果满意.  相似文献   

13.
采用电位分析法研究了基于锰(Ⅲ)Sehiff碱配合物为中性栽体的新型PVC膜阴离子选择性电极.电板对碘离子具有优良的电位响应特性,并呈现反Hofmeister行为,其选择性序列为I->>Sal->ClO4-SCN->NO2->NOr3Cl->Br->SO42-.电极在0.1~9.0×10-5mol/L浓度范围内对I-呈近能斯特响应,检测下限为2.0×10-5mol/L,斜率为-52.6 mv/pI-.电极具有选择性高、响应快、稳定性和重现性好、制备和操作简便等优点.将电极应用于药物分析,得到令人满意的结果.  相似文献   

14.
制备了加替沙星分子印迹聚合物膜电极,并研究了其性能,该电极具有良好的选择性和稳定性.电极在加替沙星浓度为1.0×10-5~1.0×10-2 mol/L内表现能斯特响应,斜率为57.44mV/pC,检测下限为5.6×10-5 mol/L.该电极成功用于加替沙星的测定,原料回收率为96%~101%.  相似文献   

15.
以水杨醛缩邻氨基苯甲酸合铜(II)[CuI(I)-HBAB]为中性载体,制备了一种对硫氰酸根(SCN-)具有优良的电位响应特性并呈现出反Hofmeister选择性行为的离子电极,其选择性次序为:SCN->ClO4->Sal->I->SO 32->NO3->Br->Cl->SO42-。该电极在pH=5.0的磷酸盐缓冲体系中具有最佳的电位响应,在1.0×10-6~1.0×10-1m ol/LSCN-浓度范围呈近能斯特响应,斜率为-57.5mV/dec(25℃),检测下限为5.0×10-7mol/L。采用交流阻抗和紫外光谱分析技术研究了配合物中心金属原子以及配合物本身的结构对电极电位响应行为的作用机理。将该电极用于废水分析,结果令人满意。  相似文献   

16.
本文以十二烷基三辛基碘化铵为定域体,用一种简便的方法研制成PVC膜SCN~-电极。该电极对SCN~-的浓度在2×10~(-6)~10~(-1)mol/L范围内符合能斯特响应,电极响应斜率为56.0mV/P~(SCN-)(10℃),稳定性、选择性较佳。  相似文献   

17.
在4×10-5mol/L ZCO-0.4mol/L NH4Cl-0.6%Na2SO3溶液中,钢(Ⅱ)-ZCO与铁(Ⅱ)-ZCO络合物在单扫描示波极谱仪上可观察到两个灵敏的极谱吸附波,峰电位分别为—0.63V和—0.76V(vs.SCE),峰电流与钢(Ⅱ)铁(Ⅱ)浓度分别在1.3×10-7—2.5×10-5mol/L和3.0×10-7—3.0×10-5mol/L范围内呈线性关系,检测限分别为7.8×10-8mol/L、1.5×10-7mol/L.本文研究了产生钢、铁波的条件,探讨了波的性质、测定出铜(Ⅱ)、  相似文献   

18.
采用3-巯丙基三甲氧基硅烷(MPTS)为单一硅源,以金纳米粒子(AuNPs)为MPTS水解凝胶颗粒的固着载体,制备了AuNPs/MPTS凝胶复合纳米粒子修饰电极.采用原子力显微镜及透射电镜观察纳米粒子的形貌及大小,并采用循环伏安法比较不同金纳米粒子含量对修饰电极电化学行为的影响.方波溶出伏安法试验表明,该修饰电极对Hg(II)的检测具有灵敏的响应,多种离子不产生干扰.在优化后的测试条件下,即在0.1mol/L的HCl溶液中,0.2V电位下富集15min,Hg(II)浓度分别为1×10-9~1×10-8 mol/L和5×10-8~5×10-7 mol/L时,溶出峰电流与Hg(II)浓度呈线性关系,相关系数分别为0.998 0和0.998 5.当富集时间为15min时,Hg(II)浓度检测限可达1×10-10 mol/L(信噪比为3),且所制备的复合纳米膜具有良好的导电性和电极重现性,可用以制作Hg(II)电化学传感器.  相似文献   

19.
报道了以双(N-甲基-N-苯基氨基二硫代甲酸)1,4-丁二醇酯为载体的PVC膜电极的响应行为.结果表明:该选择电极对银离子有良好的灵敏度和高选择性,在10-3~10-6mol/L的浓度范围内响应斜率为53.3 mV/paAg ,检测下限为3.8×10-7mol/L,碱金属、碱土金属及过渡金属离子不干扰银的测定,电极具有较好的重现性和稳定性.该电极可作为Ag 准确滴定卤素阴离子和维生素B1药片中维生素B1含量的电位滴定指示电极,并用于水样中银离子含量的直接测定.  相似文献   

20.
利用Nafion膜将血红蛋白(Hb)和银纳米粒子(AgNPs)固载到玻碳电极表面制作N O-2生物传感器.循环伏安实验表明:Hb/AgNPs/Nafion膜电极在pH值为6.9的PBS缓冲溶液中呈现出一对明显的HbFe(Ⅲ)/(Ⅱ)氧化还原峰,该电极对N O2-有良好的催化作用,线性范围为2.0×10-5~3.4×10-4 mol/L(n=18,R=0.997),检测限为1.2×1 0-6 mol/L(信噪比为3);故该膜电极可做N O-2生物传感器.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号