首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
采用响应面优化法对仙草中黄酮的提取工艺进行研究.将乙醇浓度、提取时间及液料比作为影响因子,在单因素试验的基础上,采用响应面Box-Behnken中心组合法,进行试验设计,将仙草中黄酮的提取率作为响应指标值,进行优化试验.试验结果说明各个因素对仙草中黄酮的提取率影响强弱次序为:乙醇体积分数液料比提取时间;仙草黄酮的最佳提取条件:乙醇体积分数60%,提取时间5 h,液料比30∶1(m L/g),该条件下得到的黄酮提取率最大,实际测定值为14.37%,与预测值(14.79%)没有显著性差异.表明响应面优化法分析的结果可信,所得的最佳提取条件为仙草中黄酮的综合利用奠定了基础.  相似文献   

2.
运用响应面法进行实验设计,对洋金花中东莨菪碱在超声提取过程中的各因素进行考察优化.采用HPLC法测定东莨菪碱的质量浓度,以盐酸浓度、提取时间、液料比为考察因素,东莨菪碱提取率为响应值,用Box-Behnken响应面法设计提取工艺实验,建立预测方程,优化提取工艺.结合实际可操作性,确定最佳提取条件为:盐酸浓度3 mol·L~(-1),提取时间43 min,液料比25 mL·g~(-1).实验结果显示,实际值与预测值的偏差为2.76%,相关性良好,说明对洋金花中东莨菪碱的提取进行响应面法优化合理可行.  相似文献   

3.
对浒苔多糖的碱法提取工艺进行研究,为评价提取条件对浒苔多糖提取率的影响,首先选用固液比、浸提温度、浸提时间和碱溶液浓度4个因素进行单因素多水平实验,在此基础上进行正交试验,筛选出最佳提取工艺条件.实验结果表明,影响浒苔多糖提取率的各因素的主次关系依次为:浸提温度、浸提时间、固液比,碱溶液浓度;浒苔多糖碱法提取的最佳工艺条件为:提取温度90℃,提取时间2.5h,固液比1:40(g:mL),氢氧化钠溶液浓度0.3mol/L;最佳工艺条件下,浒苔多糖的提取率为3.1%.  相似文献   

4.
响应面法优化微波法提取石崖茶类黄酮工艺   总被引:2,自引:0,他引:2  
以石崖茶为原料,采用响应面法优化微波法提取类黄酮的工艺.在单因素实验的基础上,分别选定料液比、乙醇浓度和微波处理时间3个水平进行响应面实验,通过回归分析得到优化组合条件.结果表明,石崖茶类黄酮微波法提取的最佳工艺条件为:料液比1︰30,乙醇浓度60%,微波处理时间3 min,类黄酮提取率的理论预测值为33.6%,验证值为33.7%,两者相差不大,即该优化方法可行.  相似文献   

5.
在单因素实验的基础上,利用3因素3水平的Box-behnken实验组合和响应面分析法,确定了超声波提取无柄金丝桃茎部总黄酮的最佳工艺.结果表明:超声波辅助提取无柄金丝桃茎总黄酮的优化条件为乙醇体积分数61%,液固比(mL/g)为52∶1,超声时间为21 min,该条件下,总黄酮的实际提取率为6.09%(n=3),与预测值(6.12%)接近.该提取工艺简单可行,可用于无柄金丝桃中总黄酮的提取.  相似文献   

6.
响应面分析法优化金线莲多糖提取过程的研究   总被引:1,自引:0,他引:1  
以经乙醇提取黄酮后的金线莲滤渣为材料,利用响应面法优化多糖的提取过程.在单因素实验的基础上,分别选定液料比、提取时间和温度3个水平进行响应面实验,建立金线莲多糖提取率的二次回归方程,通过回归分析及岭脊分析得到优化组合条件.研究结果表明,当提取过程中液料比为35∶1,提取时间和温度分别为2.2h和83℃时,金线莲多糖提取率的理论预测值为3.42%,验证值为3.47%±0.47%,两者相差不大,提取条件参数可靠.  相似文献   

7.
以紫茄皮为原料,采用响应面法优化超声辅助提取花青素的工艺条件.通过单因素实验考察了超声功率、超声时间、料液比、乙醇体积分数因素对紫茄皮中花青素提取率的影响,并利用BoxBehnken设计和响应面分析法,确定了紫茄皮花青素提取的最佳工艺参数.结果表明,各因素对花青素提取率影响的显著性表现为超声功率液料比超声时间乙醇体积分数,通过响应面法优化的最佳工艺条件为:超声功率为350 W、液料比为60∶1(m L/g)、乙醇体积分数为60%、时间为42 min,在此条件下紫茄皮花青素提取率为1.82%.与模型的预测值1.89基本吻合,说明响应面优化所得数据可靠.  相似文献   

8.
以板蓝根中生物活性成分腺苷为检测指标,采用响应面分析法优化板蓝根的超声提取方法,为其进一步研究提供技术参考。以市售板蓝根药材为原料,水为提取溶剂,在单因素试验的基础上,选择提取温度,提取时间和料液比为影响因素,以腺苷提取率为响应值,根据Box-Behnken响应面模型,设计3因素3水平的响应面试验,建立数学模型,确定最佳提取工艺。提取温度,料液比对腺苷提取有极显著影响;提取时间与料液比之间交互作用显著。通过软件拟合结合实际,得出最佳工艺条件为:提取时间15 min,料液比1:20,提取温度55℃,实测腺苷提取率与理论预测值吻合。采用响应面法优化板蓝根中腺苷的超声提取工艺切实可行,该工艺提取率高、操作简便,使用试剂简单经济,可对进一步推广应用提供参考。  相似文献   

9.
对提取β-胡萝卜素后的杜氏盐藻渣中多糖的提取、初步纯化和多糖脱色方法进行了实验研究.实验采用水浸提的方法,考察了提取温度、提取时间、液固比和pH值对盐藻多糖提取率的影响,盐藻多糖的最适提取条件为:提取温度:70℃,提取时间:4 h,液固比:30:1,pH值10,在此条件下,盐藻多糖的提取率为8.63%,多糖含量为65.73%.采用分级醇沉和分步醇沉的方法沉淀多糖,得到醇沉最佳条件为无水乙醇一步醇沉.采用中性蛋白酶水解脱除盐藻多糖提取液中蛋白质,脱除率为61.55%,脱蛋白后多糖含量为70.96%,采用过氧化氢对脱蛋白后多糖提取液脱色,脱色率为78.66%.  相似文献   

10.
利用响应面法优化多刺绿绒蒿中总黄酮的提取工艺.在单因素试验的基础上,选择乙醇浓度、液料比和提取时间为自变量,以总黄酮提取率为响应值,进行Box-Behnken中心组合实验设计,采用响应面法(RSM)分析这些因素对总黄酮提取率的影响.响应面优化设计得出的最佳工艺为乙醇浓度64%,液料比30:1,提取时间66min,总黄酮提取率达1.521%.  相似文献   

11.
以蛹虫草(Cordyceps militaris)菌糠为材料,进行菌糠多糖提取条件的优化研究。单因素实验表明,提取温度、水料比及提取时间均不同程度地影响多糖提取率。根据Box-Behnken中心组合实验设计原理对提取温度、水料比、提取时间进行三因素三水平试验设计,采用响应面软件Design-Expert进行处理,获得蛹虫草菌糠多糖提取最佳的优化条件。即提取温度100 ℃,水料比50∶1,提取时间3 h 优化条件下多糖提取率达5.45 %, 多糖提取预测值为5.88 mg·mL-1。建立的模型拟合度较好,可用来对蛹虫草多糖提取工艺的分析和预测。  相似文献   

12.
采用响应面分析法(RSM)优化提取腐乳中大豆多肽的工艺条件.在单因素实验的基础上,选择提取温度、甲醇体积分数、提取时间、液料比作为实验因素,进行Box—Benhnken中心组合实验设计,评估了4个因素对大豆多肽提取量的影响.结果表明,提取腐乳中大豆多肽的最佳工艺条件为:温度57℃、甲醇体积分数69%、提取时间28min、液料比(mL:g)9:1,最佳工艺条件下提取量为6.59g/100g(干基).  相似文献   

13.
响应面法优化莽草酸微波辅助提取工艺   总被引:4,自引:1,他引:3  
为优化八角茴香中莽草酸的微波提取工艺,在单因素实验基础上,选择微波提取时间、微波功率、液料比(mL/g)为自变量,莽草酸得率作为响应值,采用中心组合设计的方法,研究各自变量及其交互作用对莽草酸提取的影响。采用响应面分析软件,模拟得到二次多项式回归方程的预测模型,并确定微波提取最佳工艺条件为时间19min、微波功率614W、液料比17.3∶1。在此条件下,莽草酸的平均得率为3.03%。  相似文献   

14.
以乙醇为提取剂,采用超声辅助法对地榆根中原花青素提取工艺进行研究.在研究地榆根粒度、液料比、超声功率、超声时间、提取次数等单因素对花青素提取率影响的基础上,运用Box-Behnken中心组合试验和响应曲面法分析了液料比、超声波功率、超声时间3个因素对原花青素提取率的影响,并优化了提取工艺.结果表明:超声辅助对地榆根中原花青素提取的最佳工艺条件为液料比30.81∶1(m L∶g),功率320 W,时间42.97 min,在此工艺条件下,地榆根原花青素的提取率为4.86%.  相似文献   

15.
在单因素实验的基础上,利用Box-Benhnken中心组合设计,采用响应曲面法对荔枝壳粗多酚的提取工艺进行优化.结果表明,荔枝壳粗多酚的最佳提取工艺条件为荔枝壳在低温(4℃)下用体积分数为20%的丙酮溶液浸提1h后,用150W的超声波功率处理15min,荔枝壳粗多酚提取率为37.10%,显著缩短了提取时间,提高了荔枝壳粗多酚的提取率.  相似文献   

16.
为了探究福建安溪铁观音茶末茶多糖的最优提取工艺及其体外清除自由基的作用,考察单因素浸提温度、液料比和浸提时间对茶末茶多糖提取率的影响,采用响应面分析法优化铁观音茶末茶多糖的提取工艺,并测定茶多糖清除·DPPH的能力.结果表明:在液固比80∶1(mL/g),浸提时间130 min,浸提温度90℃的条件下,茶多糖的提取率可达9.95%;体外清除自由基试验表明,铁观音茶末茶多糖具有较强的·DPPH自由基清除能力.  相似文献   

17.
以黄酮得率为指标,采用Box-Behnken中心组合实验和响应面分析法,研究了料液比、提取温度和提取时间对橘皮中黄酮类化合物提取的影响;用AB-8型大孔吸附树脂为色谱柱填充料,对橘皮黄酮提取物进行了纯化;以橘皮黄酮对1,1-二苯基-2-三硝基苯肼(DPPH)自由基、羟基自由基的清除率为指标,研究了橘皮黄酮的体外抗氧化活性.结果表明:橘皮黄酮的适宜提取工艺是以水为提取溶剂、料液比为1∶38(g/mL)、于99℃浸提2 h,该条件下橘皮黄酮的最大得率为11.028 mg/g;AB-8型大孔吸附树脂对橘皮黄酮类化合物的纯化效果明显,纯化后橘皮黄酮的纯度提高了383.312%;对DPPH自由基、羟基自由基清除率的半抑制浓度(IC50)分别为0.019和0.557 mg/mL,纯化后橘皮黄酮对DPPH和羟基自由基的清除能力分别提高了96.185%和65.122%,表明橘皮黄酮是一种良好的天然抗氧化剂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号