首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
 为制备一种新型的木质纤维素气凝胶,采用化学预处理、溶解再生与冷冻干燥相结合的方法,对废弃的麦秸杆进行提纯、溶解、置换和干燥,并采用绿色、无毒、低廉的氢氧化钠/聚乙二醇溶液作为纤维素溶剂。采用扫描电镜(SEM)、BET 比表面积分析、X 射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)和热重分析仪(TGA),对制备的新型木质纤维素气凝胶的微观形貌、比表面积与孔径分布、晶型结构、化学结构及热稳定性进行表征。结果表明,制备的新型木质纤维素气凝胶具有连续、层叠的三维网状结构,比表面积为99.17 m2/g,总孔容为0.45 cm3/g;纤维素气凝胶的晶型由纤维素I 型转变为纤维素Ⅱ 型,结晶度为72.3%,相对于原料提高了23.4%,热稳定性也略微升高;并利用三甲基氯硅烷(TMCS)进行疏水改性,制备出了具有疏水性能的纤维素气凝胶。提供了一种新的制备木质纤维素气凝胶的有效溶剂,且具有高吸附性能、高承重能力、高结晶度的纤维素气凝胶是一种具有较大应用潜力的新型功能材料。  相似文献   

2.
为制备一种新型的木质基新材料,采用离子液体将木粉溶解,经循环冻融工艺处理结合临界点干燥即得木质纤维素气凝胶。采用扫描电镜(SEM)、透射电镜(TEM)和X射线衍射仪(XRD)对制备的木质纤维素气凝胶的微观形貌和结晶特性进行分析表征。结果表明,制备出的木质纤维素气凝胶具有的三维纤丝网状结构,通过冻融循环可以逐渐增强为片状结构,纳米纤丝的网络支架影响了气凝胶的多层级微米-纳米形貌;木质纤维素气凝胶的结晶度随冻融次数的增加呈先增加后减小的变化趋势;并阐释分析了木质纤维素气凝胶的形成机理。  相似文献   

3.
 为制备一种新型的木质基新材料,采用离子液体将木粉溶解,经循环冻融工艺处理结合临界点干燥即得木质纤维素气凝胶。采用扫描电镜(SEM)、透射电镜(TEM)和X 射线衍射仪(XRD)对制备的木质纤维素气凝胶的微观形貌和结晶特性进行分析表征。结果表明,制备出的木质纤维素气凝胶具有的三维纤丝网状结构,通过冻融循环可以逐渐增强为片状结构,纳米纤丝的网络支架影响了气凝胶的多层级微米-纳米形貌;木质纤维素气凝胶的结晶度随冻融次数的增加呈先增加后减小的变化趋势;并阐释分析了木质纤维素气凝胶的形成机理。  相似文献   

4.
为获得均一稳定的纤维素气凝胶,以再生竹纤维为原料,采用滴定悬浮和真空冷冻干燥的方法制备球形纤维素气凝胶。傅里叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)、扫描电镜(SEM)分析结果表明,球形纤维素气凝胶为纤维素II型结构,内部为疏松多孔的网络状结构。球形纤维素气凝胶的比表面积均在240 m2/g以上,且孔径均在15 nm以下,最小密度可达37 mg/cm3,这表明球形纤维素气凝胶具有较高的比表面积、较小的孔径。热重分析(TG)结果表明,纤维素气凝胶大球的最大热失重温度为364.4℃,纤维素气凝胶中球的最大热失重温度为357.3℃,纤维素气凝胶小球的最大热失重温度为354.2℃,而再生竹纤维的最大热失重温度为354.0℃。球形纤维素气凝胶在污水处理、海水除油、重金属离子吸附等领域具有开发价值。  相似文献   

5.
 为制备均一直径和高长径比的纳米纤丝化α-纤维素(NFC),采用化学预处理和高频超声相结合的方法对落叶松木材进行脱除半纤维素、木质素以及纤丝化处理。采用扫描电子显微镜(SEM)、傅里叶变换红外吸收光谱(FTIR)和X-射线衍射仪(XRD)对制备的NFC的形态特征、化学结构、晶型结构及结晶度进行表征。结果表明,制备的NFC具有均一直径(约35nm)和高长径比(>280);NFC的晶型结构为纤维素Ⅰ型,结晶度为62.8%,比原料提高了14.2%;并利用NFC水分散液经冷冻干燥制备成了超透明的NFC薄膜和柔性的超轻泡沫材料。文中提供了一种新的制备纳米纤化天然生物质纤维素的有效方法,且具有高结晶度、高长径比和纳米尺寸的NFC是一种具有较大应用潜力的新型纳米材料。  相似文献   

6.
 为获得均一稳定的纤维素气凝胶,以再生竹纤维为原料,采用滴定悬浮和真空冷冻干燥的方法制备球形纤维素气凝胶。傅里叶变换红外光谱仪(FTIR)、X 射线衍射仪(XRD)、扫描电镜(SEM)分析结果表明,球形纤维素气凝胶为纤维素Ⅱ 型结构,内部为疏松多孔的网络状结构。球形纤维素气凝胶的比表面积均在240 m2/g 以上,且孔径均在15 nm 以下,最小密度可达37 mg/cm3,这表明球形纤维素气凝胶具有较高的比表面积、较小的孔径。热重分析(TG)结果表明,纤维素气凝胶大球的最大热失重温度为364.4℃,纤维素气凝胶中球的最大热失重温度为357.3℃,纤维素气凝胶小球的最大热失重温度为354.2℃,而再生竹纤维的最大热失重温度为354.0℃。球形纤维素气凝胶在污水处理、海水除油、重金属离子吸附等领域具有开发价值。  相似文献   

7.
干燥溶剂介质对常压制备SiO2气凝胶的影响   总被引:1,自引:0,他引:1  
以正硅酸乙酯和乙醇等为原料,通过溶胶-凝胶、表面修饰及溶剂置换等后续工艺,实现常压干燥法制备块状SiO2气凝胶,并考察干燥溶剂介质对气凝胶常压制备的影响。研究结果表明:采用混合溶剂干燥的SiO2气凝胶性能较单一溶剂更佳,以正己烷和甲苯混合溶剂制备的SiO2气凝胶性能最优,具有低表观密度(0.102 7 g/cm3)、高比表面积(928.4 m2/g)、大孔容(3.295 cm3/g)及疏水性良好等特性。  相似文献   

8.
系统讨论了绿潮浒苔的独特结构和功能特性,旨在制备纳米纤丝化的海藻纤维素和高比表面积的气凝胶材料,并为浒苔的高价值应用提供新的思路。将绿潮肇事种浒苔化学纯化脱去多糖、蛋白、脂肪后,用圆盘胶磨(20000 r/min,20 min)进行纳米纤丝化,制备出均一直径(大约40 nm)和高长径比的Iα纳米纤丝化纤维素。经由叔丁醇置换和冷冻干燥后可以制备出高比表面积(277 cm2/g)、密度为23 mg/cm3的柔性纳米纤丝化纤维素气凝胶。所有这些结果通过扫描电镜(SEM)、红外光谱仪(FTIR)、X射线衍射仪(XRD)进行分析。在此基础上,采用机械法直接用胶体磨将浒苔原料进行纳米纤丝化,冷冻干燥后制备出全组分的浒苔泡沫材料。  相似文献   

9.
离子液体-水混合溶剂中Mg/Al水滑石的制备与表征   总被引:1,自引:0,他引:1  
以离子液体-水为混合溶剂,通过水热法制备了Mg/Al水滑石,借助XRD、SEM、TG、N2吸附-脱附、红外等技术对产物的晶相、晶体相貌特征、热稳定性及比表面积进行了表征。结果表明,在离子液体-水混合溶剂中可生成具有良好晶型和热稳定性的水滑石,并且与纯水相比,离子液体-水混合溶剂中制备的水滑石具有较高的结晶度,并且具有较大的比表面积和较窄的孔径分布。  相似文献   

10.
甲基三乙氧基硅烷改性制备疏水SiO_2气凝胶   总被引:4,自引:2,他引:2  
采用原位聚合法结合超临界干燥工艺,以正硅酸四乙酯为硅源、甲基三乙氧基硅烷为改性剂制备出疏水型SiO2气凝胶.采用比表面积及微孔物理分析仪、接触角分析仪、热分析仪和红外光谱仪对其性能和结构进行表征.结果表明:所制备出的SiO2气凝胶是接触角为160°、比表面积为674.47 m2/g和孔体积为4.13 cm3/g的疏水型气凝胶.疏水SiO2气凝胶的热稳定温度为244.5℃.  相似文献   

11.
近年来,研究者们制备了各种吸附材料应用于溢油处理,其中气凝胶作为地球上最轻的合成固体,具有超低密度、高孔隙率和高比表面积等优点,在油水分离处理方面得到了广泛关注。纤维素作为一种廉价而丰富的天然聚合物,是制备气凝胶材料的良好原料。本文综述了纤维素气凝胶的制备方法、干燥方法以及疏水改性方法,并对纤维素气凝胶在油水分离领域的应用现状进行分析总结。  相似文献   

12.
以钛酸丁酯为钛源,甲酰胺为干燥控制化学添加剂(DCCA),采用溶胶-凝胶法及溶剂置换等后续工艺,结合常压干燥法制备块状TiO2气凝胶,并研究甲酰胺对气凝胶微观结构的影响.采用BET,SEM,XRD及FT-IR等检测方法对样品结构性能进行表征.研究结果表明:采用甲酰胺作为干燥控制化学添加剂制备TiO2气凝胶,可缩短凝胶时间,减小表观密度,提高比表面积,防止凝胶开裂;当甲酰胺与钛酸丁酯的物质的量比为0.8时,制备的块体TiO2气凝胶微观结构最佳,该样品表观密度为0.18 g/cm3,比表面积为579.6 m2/g,平均孔径为19.4 nm,经850℃高温处理后表现出较好的热稳定性及光催化性能.  相似文献   

13.
以Al(NO_3)_3、Y(NO_3)_3的水合物为前驱体,结合溶胶-凝胶法和超临界干燥方式,制备Y掺杂Al_2O_3气凝胶。研究气凝胶经热处理后的比表面积、晶相、微观形貌及气凝胶中Y元素分布形式的变化规律,并分析Y对气凝胶热稳定性的作用机制。结果表明:制备的Y掺杂Al_2O_3气凝胶具有较高的初始比表面积(483 m~2/g),在高温下具有较高的比表面积保留(1 200℃处理后仍有80 m~2/g)。Y元素在Al_2O_3气凝胶中均匀分布,抑制了高温下Al~(3+)的扩散和重排,经1 200~1 300℃热处理后,Y元素由均匀分布转变为非均匀分布,在Al_2O_3颗粒表面生成Y和Al的化合物,能够进一步减少颗粒间的颈部接触,抑制烧结和相变。经1 300℃热处理后,由于Y和Al的化合物本身比表面积较低,气凝胶总的比表面积发生显著下降。  相似文献   

14.
二氧化硅气凝胶的性能受热过程的影响   总被引:2,自引:0,他引:2  
成功地以水玻璃为硅源,经乙醇溶剂替换及六甲基二硅醚和盐酸的混合液对SiO2湿凝胶表面基团改性后,常压干燥制备出低密度、高比表面积、超疏水、低热导率的高性能SiO2气凝胶块体.SiO2气凝胶在室温至400℃附近具有稳定的疏水性能,460℃附近气凝胶由疏水型完全转变成亲水型.重点研究了室温至400℃之间,SiO2气凝胶的微观结构和物理性能受热处理过程的影响.SiO2气凝胶即使经过400℃高温热处理后,仍能保持优异的疏水性能、较高的比表面积和较低的热导率等.  相似文献   

15.
 系统讨论了绿潮浒苔的独特结构和功能特性,旨在制备纳米纤丝化的海藻纤维素和高比表面积的气凝胶材料,并为浒苔的高价值应用提供新的思路。将绿潮肇事种浒苔化学纯化脱去多糖、蛋白、脂肪后,用圆盘胶磨(20000 r/min,20 min)进行纳米纤丝化,制备出均一直径(大约40 nm)和高长径比的Iα纳米纤丝化纤维素。经由叔丁醇置换和冷冻干燥后可以制备出高比表面积(277 cm2/g)、密度为23 mg/cm3的柔性纳米纤丝化纤维素气凝胶。所有这些结果通过扫描电镜(SEM)、红外光谱仪(FTIR)、X射线衍射仪(XRD)进行分析。在此基础上,采用机械法直接用胶体磨将浒苔原料进行纳米纤丝化,冷冻干燥后制备出全组分的浒苔泡沫材料。  相似文献   

16.
为制备廉价清洁的吸水吸油性废报纸基纤维素气凝胶(WNCA),使用1-烯丙基-3-甲基咪唑氯盐离子液体(AmImCl)溶解无任何前处理的废报纸,经去离子水、无水乙醇和叔丁醇依次置换即可得纯净的纤维素水凝胶,将其冷冻干燥即可制备柔性的WNCA。采用扫描电子显微镜(SEM)、透射电镜(TEM)和X射线衍射仪(XRD)对制备的WNCA的形态特征、结晶特性及结晶度进行表征分析。结果表明,WNCA具有良好的多孔三维网络交联结构;其晶型结构为纤维素Ⅰ型,结晶度为62.6%,较之所用原料提高了12.8%;该气凝胶能够吸收其自身质量18~20倍的水和废弃污油,通过简单挤压即可把99.8%的液体除去,具备循环利用性能,同时该气凝胶显示了良好的机械性能且可反弹。该研究所用试剂均绿色环保,为绿色气凝胶的制备提供了科学思路。  相似文献   

17.
采用原位聚合法,以正硅酸四乙酯(TEOS)为原料、甲基三乙氧基硅烷(MTES)为疏水改性剂,活性炭为载体,制备疏水SiO2气凝胶修饰活性炭复合材料。采用接触角分析仪、N2吸附法、傅里叶红外光谱仪(FT-IR)、扫描电子显微镜(SEM)对疏水SiO2气凝胶修饰活性炭复合材料的表面特性和结构进行表征。结果表明:所制备的疏水SiO2气凝胶修饰活性炭复合材料的接触角为156°、比表面积为759.2 m2/g、孔体积为4.38 cm3/g,最可几孔径是32nm,孔径主要分布为1~50 nm,疏水SiO2气凝胶均匀地分散于活性炭表面。  相似文献   

18.
以正硅酸乙酯(TEOS)为硅源,三甲基氯硅烷(TMCS)为表面修饰剂,采用酸碱两步催化溶胶-凝胶法和常压干燥法,通过在凝胶中填充适量正己烷(N-hexane)控制溶胶-凝胶过程,使凝胶孔洞趋于均匀,提高凝胶溶剂置换和表面改性效率,制备高性能Si O2气凝胶,制备工艺周期为30 h。采用BET,SEM和FT-IR等对样品进行表征。研究结果表明:正己烷填充量为0.2(TEOS与N-hexane物质的量比为1:0.2),制备周期最短,制备出的样品具有最大比表面积(972.5 m2/g)、最大孔容(2.9 cm3/g)和最小密度(0.08 g/cm3),疏水性最佳。  相似文献   

19.
 采用纤维素为原料,制备了超疏水磁性纤维素粒子。竹溶解浆用氢氧化钠/尿素/水体系溶解,在水中再生形成纤维素粒子。再采用原位沉淀法制得磁性纤维素粒子,正十八烷基三甲基硅烷修饰后得到超疏水磁性纤维素粒子。用扫描电镜(SEM)、傅里叶红外光谱仪(FT-IR)、热失重分析仪(TG)和液滴形状分析仪(CA)对改性纤维素粒子的形貌、化学结构、热稳定性和超疏水性进行了分析。改性纤维素粒子表现出超疏水性能和磁响应性能,水接触角达到151.2°。改性纤维素粒子可以包裹水滴和甘油形成液体弹珠。  相似文献   

20.
 根据仿生棉花“轻柔飘逸”的特性,制备了具有超轻、超疏水、弹性和可折叠性能的一种新型纳米纤丝化纤维素(NFC)气凝胶。将废弃的枯落竹叶通过一系列化学处理,获得纯化的枯落竹叶纤维素。纤维素通过超声处理,可以将纤维素束分散成纳米纤维素纤维,经过冷冻干燥,制备NFC气凝胶。再通过MTMS处理,制备出具有这些性能的NFC气凝胶。采用接触角测量仪测得接触角为152°。通过扫描电子显微镜(SEM)和能量弥散X射线分析(EDS)对纯化的纤维素和制备的气凝胶的表面形貌和能谱进行分析,通过傅里叶变换红外光谱(FT-IR)对枯落竹叶、纯化后的纤维素和获得的气凝胶进行官能团分析。该研究所用试剂均为绿色环保,为绿色气凝胶的制备提供了科学思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号