首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高温燃气中单个液滴的蒸发特性   总被引:5,自引:0,他引:5  
为分析单个液滴在高温燃气中的运动和蒸发过程,考虑了气-液两相耦合,建立了描述整个过程的数理模型,并通过计算获得了液滴直径、速度和平均温度的变化规律以及燃气温度和速度的影响.计算结果显示,较高的燃气温度和速度都能加速蒸发过程.另外发现当燃气温度沿液滴运动方向降低时,存在一个临界液滴直径,小于该值时,燃气速度越高液滴蒸发时间越短,超过该值时,燃气速度越高液滴蒸发时间越长.在文中的计算条件下测得该临界值约为100ìm.所得结果可为雾化液滴群在高温气流中的蒸发特性研究提供依据.  相似文献   

2.
为了探索驾驶者反应时间对交叉口两难区的影响,构建了临界反应时间的计算模型,基于临界反应时间与反应区间的位置关系将两难区划分为3种形态,确定了不同形态两难区的分布区间,建立了两难区的长度模型,并通过具体算例求得在倒计时不同显示时长和驾驶者不同反应时间下两难区位置、分布区间和长度的具体数值.结果表明:在倒计时正常显示时长为10.00 s、速度为35km·h~(-1)、车辆加速度和制动减速度分别为1.0 m·s~(-2)和-1.5 m·s~(-2)的交叉口两难区最大长度为21.3 m;随着倒计时显示时长的减少,两难区有向停止线逐渐前移的趋势;在某一固定显示时长下,驾驶者越延迟做出反应其两难区的长度越大.  相似文献   

3.
采用粒子图像成像技术(PIV)测定了旋转床空腔区内液滴尺寸和液体的流动速度,研究了填料厚度和转速对空腔区内液滴平均直径的影响,得到的液滴平均直径范围为0.15~0.9 mm。利用粒子图像成像技术观测了空腔区内流体流动情况,验证了旋转床内径处存在流动端效应区。对测量得到的速度进行了关联,得到了旋转床空腔区内液滴速度的关联式。最后通过引入切向相对速度差σ,得到了设计中所需最小填料径向厚度为10cm。  相似文献   

4.
旋流压力式喷嘴低压喷淋特性   总被引:1,自引:0,他引:1  
以自来水为喷淋介质,对旋流压力式喷嘴低压喷淋特性进行试验研究.分析喷嘴流量和喷孔直径对喷淋角、液滴Sauter平均直径(SMD)的影响规律,研究旋流压力式喷嘴喷淋液滴尺寸分布、喷淋介质径向通量分布及喷淋周相均匀度.结果表明,喷嘴流量越大,喷淋角越大,液滴尺寸越小;喷孔直径增加,喷淋角和液滴尺寸均增大.低压喷淋液滴SMD集中在250~550μm之间,属于大颗粒,得出计算液滴SMD的关联式.喷淋通量在中心最大,喷嘴流量增大,边缘区喷淋通量逐渐增加,介质喷淋周相均匀性较好.实验结果可以为旋流压力式喷嘴,以及惰性粒子流化床干燥器的设计和改进,提供实验依据.  相似文献   

5.
除尘脱硫装置气液两相流场的数值模拟   总被引:1,自引:0,他引:1  
利用FLUENT软件对SHG-Ⅱ-Z型除尘脱硫装置内的气液两相流场进行了数值模拟.计算中选择RNG k-ε湍流模型及随机轨道模型,数值计算采用SIMPLEC算法.计算结果表明,实心圆锥喷射方式的除尘脱硫效率高于空心圆锥喷射方式;喷射液滴的直径和速度影响其在筒体内的分布,喷射速度越大,被完全脱除的液滴直径越大;进口气速影响液滴的脱除效率,当气速增大时要适当增大液滴的直径.  相似文献   

6.
人工环境室内湿度场的数值模拟和优化   总被引:1,自引:0,他引:1  
采用FLUENT离散相模型对环境室内水滴的蒸发过程仿真模拟.研究了喷入液滴直径、送风速度和送风温度对环境室内流场、湿度场的影响.计算结果表明:喷入液滴直径越小、送风温度越低时,湿度场的均匀性越好;增大送风速度,湿度场能更快达到稳定.综合考虑经济性和湿度场均匀性,对于该计算模型,在送风温度为320 K、送风速度为18 m/s时得到最优的液滴直径为10μm;在送风温度为320 K、液滴直径为2μm时得到最优送风速度为18 m/s.  相似文献   

7.
为了研究液滴与球形颗粒的碰撞规律,建立了正确反映液滴与颗粒间相互碰撞的物理模型.利用所建模型模拟了液滴与颗粒的动态碰撞过程,进而对液滴半径铺展系数及液膜中心高度系数进行分析,研究了液滴与颗粒间的撞击速度、湿润角、粒径比等参数对碰撞结果的影响.结果表明:在一定条件下,撞击速度的提高会增大液滴的最大铺展半径系数,当撞击速度为0.4 m·s-1时,液滴完全反弹,当撞击速度提高到1.4 m·s-1时,液滴发生破碎;当速度和粒径比不变时,湿润角与最大液膜中心高度系数成正比;在湿润角不大于90°时,粒径比越大,液滴包覆的概率就越大.  相似文献   

8.
川西中浅层水平井不同程度产液,当气井积液时,需实施泡排等工艺技术排液后才能稳产,而判断积液最简单的方法是计算气井携液临界气量,气井携液临界气量计算常用液滴或液膜模型,此两种模型均基于液滴或液膜反转作为判断积液标志而建立,应用结果与实际符合率较低。针对以上问题,开展了水平井积液规律模拟实验及相关模型研究,结果表明,液滴或液膜反转时,井筒均未积液,以液滴或液膜反转判断积液建立的模型计算的积液时间比实际偏早,进而基于实验现象,分析气体带液能力,建立新的气井积液判断标准;倾斜段携液临界气量随井斜角度的变化先增加后减少,40°时携液临界气量最大;基于实验测试数据,考虑含油率、井斜角对携液临界气量的影响,建立了携液临界流量计算模型,应用于中浅层水平井油—气—水三相流井筒积液判断,符合率91.4%,在同类气井具推广应用价值。  相似文献   

9.
用液滴碰壁模型对波形板汽水分离器的模拟   总被引:1,自引:0,他引:1  
分析了不同参数的液滴碰壁后各参数的变化,应用液滴碰壁模型对波形分离器内进行了二维数模拟,计算出不同液滴直径在同一入口条件下的分离效率,得出液滴开始发生沉积和完全沉积的临界速度,并计算出发生飞溅的液滴比例,计算结果表明,发生飞溅现象时,液滴的直径已不在波形板内液滴直径分布的主区域内。  相似文献   

10.
旋转圆盘表面液体与壁面之间存在切向相对滑移,液体的转速并不等于圆盘转速.利用高速摄影拍摄圆盘边缘液体形态,用软件Image J测量了液体的滑移率及液体头液滴与液柱的直径比.分析发现,垂直旋转圆盘不同区域的液体滑移率不同,随转速增加,各区域滑移率趋向相同,为10%~13%.圆盘表面的波动、边缘液体的形态会影响液体滑移率的...  相似文献   

11.
由于工艺精度等原因,椭圆钢丝螺旋弹簧的截面会产生绕形心旋转变形。为了研究截面旋转角的影响和计算旋转椭圆钢丝螺旋弹簧的切应力及刚度,基于弹性力学,推导了旋转椭圆钢丝螺旋弹簧切应力模型与刚度模型。通过实例计算和有限元分析可知,切应力计算值与仿真值的最大相对偏差为1.79%,最大切应力及其所在角度以及刚度的计算值与仿真值的相对偏差均小于1%。结果表明,旋转椭圆钢丝螺旋弹簧的切应力及刚度模型是正确的,截面旋转角只影响截面切应力,对刚度无影响;若截面旋转角达到15°,该截面最大切应力较水平椭圆截面增加8.96%,所以提高工艺水平对改善弹簧的寿命及可靠性非常重要。  相似文献   

12.
液滴撞击液膜是喷淋冷却过程中的常见现象,利用欧拉多相流模型与连续表面力模型模拟了液滴撞击液膜的传热过程,其中液滴撞击液膜的飞溅规律与实验结果一致.分析了液滴撞击液膜飞溅半径与飞溅高度的变化规律,并进一步分析了撞击速度、液滴直径、液膜深度、壁面温度对液滴-液膜撞击传热量的影响,结果表明增加撞击速度、液滴直径、液膜深度有助于提高喷淋冷却的效果.  相似文献   

13.
喷动流化床尿素造粒过程的模拟计算   总被引:2,自引:0,他引:2  
通过热量衡算推导出了喷动流化床尿素造粒过程最大喷液量的计算方程,基于粒数衡算原理,提出了喷动流化床造粒过程溢流排料动态粒度分布离散化模型。  相似文献   

14.
为探究影响生物柴油雾化性能的主次因素,对B100(棕榈油生物柴油)、N10(生物柴油的体积分数为90%,正丁醇的体积分数为10%)和N20(生物柴油的体积分数为80%,正丁醇的体积分数为20%)的雾化特性进行了试验研究。采用定容弹高速摄影与多普勒粒子分析仪测量系统研究了3种燃油在不同喷孔直径、喷油压力及背压下的微观雾化特性,分析了雾化油滴的轴向速度和索特平均直径DSMD的变化趋势,并在此基础上通过灰色关联理论,计算得到了正丁醇掺混比、喷孔直径、喷油压力及背压对生物柴油DSMD的影响程度。结果表明:随着正丁醇掺混比的增加,雾化油滴的轴向速度与DSMD都有所减小,B100的DSMD从轴向长度5mm处的106.74μm降低到轴向长度70mm处的57.98μm;随喷孔直径和背压减小、喷射压力增大,3种生物柴油的DSMD均呈下降趋势,雾化质量得到改善。通过DSMD的灰色关联计算,得到正丁醇掺混比、喷孔直径、喷射压力和背压与DSMD之间的关联度分别为0.507 2、0.755 8、0.607 7和0.789 5,说明背压对DSMD的影响最大,喷孔直径与喷射压力次之,正丁醇掺混比对DSMD的影响最小。  相似文献   

15.
为探究影响生物柴油雾化性能的主次因素,对B100(棕榈油生物柴油)、N10(生物柴油的体积分数为90%,正丁醇的体积分数为10%)和N20(生物柴油的体积分数为80%,正丁醇的体积分数为20%)的雾化特性进行了试验研究。采用定容弹高速摄影与多普勒粒子分析仪测量系统研究了3种燃油在不同喷孔直径、喷油压力及背压下的微观雾化特性,分析了雾化油滴的轴向速度和索特平均直径D_(SMD)的变化趋势,并在此基础上通过灰色关联理论,计算得到了正丁醇掺混比、喷孔直径、喷油压力及背压对生物柴油D_(SMD)的影响程度。结果表明:B100的D_(SMD)从轴向长度5 mm处的106.74 μm降低到轴向长度70 mm处的57.98 μm,且随着正丁醇掺混比的增加,雾化油滴的轴向速度与D_(SMD)都有所减小。随喷孔直径和背压减小、喷射压力增大,3种生物柴油的D_(SMD)均呈下降趋势,雾化质量得到改善,通过D_(SMD)的灰色关联计算,得到正丁醇掺混比、喷孔直径、喷射压力和背压与D_(SMD)之间的关联度分别为0.507 2、0.755 8、0.607 7和0.789 5,说明背压对D_(SMD)的影响最大,喷孔直径与喷射压力次之,正丁醇掺混比对D_(SMD)的影响最小。  相似文献   

16.
采用只能拍摄液态喷雾形态的背景散射法,在定容容器内模拟增压发动机实际压力和温度条件,利用超高速摄像机,观察二甲醚喷雾形态.研究了缸内环境、喷射压力、喷孔直径等因素对二甲醚喷雾特性的影响.结果表明:受喷射速度影响,喷雾贯穿距离随着喷射压力的增加而增大;喷雾液态贯穿距离随喷孔直径的增加而增加;在增压发动机高温、高压条件下,由于缸内气体密度和温度增加,喷雾贯穿距离减小;只在常温条件下,二甲醚喷雾周围才出现液滴;与柴油喷雾相比,二甲醚喷雾蒸发更迅速;2种喷雾的外缘处均呈现卷吸状,柴油喷雾分裂是液滴不断破碎微粒化,二甲醚喷雾分裂则是从喷雾液核开始直接迅速蒸发.  相似文献   

17.
为探究影响生物柴油雾化性能的主次因素,对B100(棕榈油生物柴油)、N10(生物柴油的体积分数为90%,正丁醇的体积分数为10%)和N20(生物柴油的体积分数为80%,正丁醇的体积分数为20%)的雾化特性进行了试验研究。采用定容弹高速摄影与多普勒粒子分析仪测量系统研究了3种燃油在不同喷孔直径、喷油压力及背压下的微观雾化特性,分析了雾化油滴的轴向速度和索特平均直径D_(SMD)的变化趋势,并在此基础上通过灰色关联理论,计算得到了正丁醇掺混比、喷孔直径、喷油压力及背压对生物柴油D_(SMD)的影响程度。结果表明:B100的D_(SMD)从轴向长度5 mm处的106.74 μm降低到轴向长度70 mm处的57.98 μm,且随着正丁醇掺混比的增加,雾化油滴的轴向速度与D_(SMD)都有所减小。随喷孔直径和背压减小、喷射压力增大,3种生物柴油的D_(SMD)均呈下降趋势,雾化质量得到改善,通过D_(SMD)的灰色关联计算,得到正丁醇掺混比、喷孔直径、喷射压力和背压与D_(SMD)之间的关联度分别为0.507 2、0.755 8、0.607 7和0.789 5,说明背压对D_(SMD)的影响最大,喷孔直径与喷射压力次之,正丁醇掺混比对D_(SMD)的影响最小。  相似文献   

18.
液固高速撞击时材料表面损伤的数值模拟   总被引:2,自引:2,他引:0  
为了研究液固撞击的机理,采用光滑粒子流体动力学方法(SPH)与有限单元法(FEM)建立了考虑流固耦合效应的高速液固撞击数值模型,详细分析了直径为2mm、撞击速度为1000m/s的液滴和射流对有机玻璃(PMMA)的三维撞击和破坏状况.分析表明:射流与液滴在撞击初始时刻的前缘变形和内部压力分布几乎是完全相同的;液滴撞击固体的最大压力值出现在0.20μs时,但此时材料内部最大等效应力只有104MPa,材料还不足以发生破坏;产生于液固撞击瞬时后0.32μs、速度高达2925m/s的侧向射流是使固体表面产生破坏的主要原因,因此撞击最初的破坏位于以撞击中心为圆心的一个圆环区域处.所得材料表面损伤情况与Brunton的实验数据吻合良好,证明了数值模型的可行性和精确性.  相似文献   

19.
以空气横掠水平壁面上的液滴作为研究对象,确定液滴脱离时的界面形状,给出沿接触线周边接触角的变化关系,在滞后张力模型的基础上,从力平衡出发建立脱落直径的联立方程,讨论液滴脱离直径与来流速度的关系.随来流速度增加,液滴所受表面力和风力均增加,低来流速度下,表面力起主要控制作用,随来流速度增加,风力比表面力增加得快,导致液滴半径越小,被风吹离所需的临界风速越大.液滴脱离的临界风速还与液滴距平板前缘L的距离有关,表现为L越大,液滴被吹离所需的临界风速越大,且液滴半径越大,L影响越显著.  相似文献   

20.
在Euler-Lagrange三维坐标系下,建立了液滴重力分离模型.利用该模型模拟了气化炉洗涤冷却室气液分离空间内的气液两相流动.揭示了液滴的运动规律,分析了气液分离空间高度、气流速度以及液滴初始速度对液滴分离效率的影响.研究结果表明:液滴在飞溅进入气液分离空间后作减速运动,越小尺寸液滴的减速越为明显;液滴的分离效率随着气液分离空间高度的增加而提高并趋于稳定;在相同液滴初速度以及相同气液分离空间高度下,随着气流速度的降低,液滴的分离效率反而增大;随着液滴初始速度的提高,获得最大液滴分离效率所需的气液分离空间高度增加.在考虑液滴碰撞效应后,计算得到的液滴分离效率有所提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号