首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 905 毫秒
1.
为分析行车作用下盾构隧道下穿既有铁路框架桥梁结构的耦合动力学影响,基于铁路大系统动力学与有限元理论,建立列车-有砟轨道-框架桥梁-土体-盾构隧道耦合动力学模型,研究不加固地层和加固地层开挖完成后所引起的既有铁路框架桥梁结构的沉降变形规律,引入ABAQUS?-MATLAB?联合仿真、时变耦合和多步长动力迭代求解策略,对盾构隧道下穿和行车作用耦合效应下既有铁路结构的动力响应进行数值仿真,分析和评估耦合效应下的列车动力学行为和行车性能。研究结果表明:相对框架桥梁不对称下穿,盾构隧道导致结构沉降变形呈不对称分布,左线先行开挖引起的沉降大于右线的沉降;加固地层能够减小盾构开挖引起的沉降变形和车致振动位移,但会增大车致振动加速度及框架桥梁应力;盾构开挖对列车运行造成附加影响,系统动力响应、车辆运行安全性和平稳性指标都与运行速度呈正相关,速度超过120 km/h后有跳轨风险;在速度为160 km/h时,车体振动附加影响增幅可达到136.03%。在施工过程中,应注意加固开挖造成的车致振动加速度增大现象,同时应当考虑降速通过盾构隧道下穿区段。  相似文献   

2.
为研究龙卷风作用下大跨度桥梁车-轨-桥系统动力响应及行车安全性,首先以Kou-wen三维模型模拟龙卷风速度场,基于准定常理论确定了移动龙卷风作用下车辆和桥梁风荷载时程. 然后,分别采用多体系统动力学和有限元理论建立列车和轨道-桥梁子系统动力方程,基于轮轨空间非线性接触建立风-车-轨-桥系统动力方程,并采用分离迭代法求解系统动力响应. 数值算例中,以某公路铁路两用斜拉桥为研究对象,通过风洞试验和CFD数值模拟确定车辆和桥梁气动力系数,分析了龙卷风移动路径、强度等级和行车速度对车-桥系统动力响应及列车行车安全性的影响. 结果表明:桥梁竖向振动响应比横向显著,且龙卷风竖向风速对桥梁竖向位移起控制作用 . 当车辆经过风荷载最大位置时,车辆的横向和竖向振动响应均达到最大值,且车辆动力响应受龙卷风荷载和桥梁动力响应共同影响. EF1级和EF1.3级龙卷风作用下,列车安全通过的车速阈值分别为180 km/h和114 km/h.  相似文献   

3.
铁路地下直径线橡胶浮置板道床钢轨变形限值研究   总被引:1,自引:0,他引:1  
浮置板道床能有效减小铁路振动的影响,因此可将其应用于穿越人口密集区的铁路地下直径线。为了确保行车的安全性和舒适性,有必要对铁路运营下浮置板道床钢轨的合理变形限值进行研究。基于有限元法,建立了车辆-橡胶浮置板道床耦合动力学模型,对SS9列车100 km/h速度下车辆、钢轨、浮置板等部件的动力学特性进行了研究,并从行车安全性和平稳性方面提出了浮置板道床钢轨的变形限值建议值。研究表明:橡胶垫面刚度小于0.02 N/mm3时,轨道结构产生较大垂向位移;100 km/h速度条件下,铁路橡胶浮置板道床钢轨垂向变形限值取4 mm时,能满足行车安全性和平稳性要求。  相似文献   

4.
以盾构下穿某高速铁路简支梁桥为工程背景,运用有限元软件Midas/GTS建立盾构隧道先后下穿高铁桥梁模型,分析盾构下穿时列车荷载作用下高速铁路简支桥梁动力响应。研究首先分析了当盾构开挖至桥梁近侧,列车以不同速度200~350km.h-1、不同轴重110~220kN运行时对高速铁路简支梁桥墩顶沉降的影响。接着探讨在不同开挖阶段下,速度200 km.h-1轴重110kN的列车动荷载冲击下高铁桥梁墩台顶变形规律。结果表明:盾构开挖至桥梁近侧时,不同速度、轴重列车荷载冲击下,高铁桥梁墩台顶的变形规律基本一致,其沉降在一定时间达到峰值,其后迅速降低并稳定在某一波动范围内;随着列车速度与轴重的增加,墩台顶沉降峰值越大;盾构开挖时,列车时速低于200 km.h-1、轴重小于110kN时其墩台顶沉降峰值当满足高铁桥梁单墩顶竖向沉降控制标准,与列车速度相比,列车轴重对桥梁的动力响应影响更大;列车动荷载作用下,盾构隧道开挖对高铁桥梁墩顶变形的影响主要为盾构开挖至桥梁近侧的初开挖阶段,盾构开挖远离桥侧后墩顶变形基本处于稳定状态。  相似文献   

5.
为了优化速度为140 km/h高速地铁隧道的净空断面面积,采用三维、可压、非定常N-S方程的数值计算方法和κ-ε湍流模型,分析地铁列车由明线驶入不同截面积隧道时所产生的气动效应。研究结果表明:地铁列车由明线驶入隧道时产生的气动效应比在隧道内区间运行时产生的气动效应更加剧烈;当隧道净空断面面积采用现有速度为120 km/h的地铁常用截面积26 m~2时,所需地铁列车密封指数为6 s;当地铁列车密封指数取4 s和3 s时,所需地铁隧道净空断面面积分别为30.5 m~2和35.7 m~2。  相似文献   

6.
高铁线路隧道-桥梁-隧道路段常伴随强烈的横风,列车行驶至隧道与桥梁连接段时常常受到横风的突然冲击,严重影响了列车的行车安全性。基于计算流体力学RNG湍流模型和多孔介质理论,建立列车-隧道-桥梁-风屏障三维CFD数值模型和风-车-轨-桥动力耦合分析模型,研究了高速列车通过隧道-桥梁-隧道路段过程中列车的气动荷载和行车安全指标的变化特性。结果表明:桥隧相连段设置风屏障后,各节车厢的气动荷载突变幅值显著降低,降幅达50%以上,其中横向力和倾覆力矩受风屏障的影响最为显著,降幅高达88%以上;设置风屏障后列车行车安全指标显著降低,迎风侧和背风侧各轮对(除了头车1、3号轮对外)的安全指标波动幅度相同;头车的安全指标对整个列车行车安全性起控制作用,尤其是头车转向架前轮(即1、3号轮对)的;列车由隧道驶入桥梁过程中的行车安全性较由桥梁驶入隧道过程的小。  相似文献   

7.
文章基于郑州地铁1号线农业南路—东风南路站实际工程,开展粉砂土排水工况的动三轴试验,基于动三轴试验结果提出粉砂土塑性累积变形计算公式,并结合有限元模拟获得的地层动偏应力数据,预测小曲率半径为250~350 m、列车速度为40~200 km/h时隧道地基的长期累积变形。研究结果表明:相较于软黏土,粉砂土更易受到振动变形破坏,其初始阶段的变形量与变形速率更大;根据数值模拟计算结果,曲率半径为350 m、速度为80 km/h工况下运行30 a的累积沉降为20.23 mm;列车行驶速度越大,曲率半径越小,动偏应力越大,且相较于曲率半径的影响,曲线隧道地基长期沉降对列车速度的敏感性更大;曲线隧道设计、施工和运营时,要综合考虑曲率半径和列车速度的影响,当曲率半径为250~350 m时,理论上,列车速度宜控制在80 km/h以下,而当曲线隧道曲率半径大于350 m时,列车速度可适当调高。  相似文献   

8.
高速列车振动荷载下立体交叉隧道结构动力响应分析   总被引:2,自引:0,他引:2  
文章运用有限元方法建立了高速铁路立体交叉隧道数值计算模型,分析了高速列车振动荷载下交叉隧道结构的动力响应特性,探讨了围岩级别、行车速度、列车通车方式、隧道交叉角度以及岩柱高度等参数对下穿隧道衬砌结构动力响应变化规律的影响。研究结果表明:围岩级别、行车速度及列车通车方式对下穿隧道动应力响应影响较大;下穿隧道衬砌结构的竖向位移、竖向加速度、第一主应力及第三主应力随着围岩级别提高、行车速度增加、行车方式改变而增大,随着岩柱高度增加而减小;随着交叉角度增加,衬砌结构变形、加速度及第三主应力峰值有所减小,但第一主应力峰值增加,这对于抗压强度大于抗拉强度的混凝土结构是不利的。  相似文献   

9.
建立了车辆-轨道-隧道及大地-房建结构空间耦合动力学模型,通过子模型间的相互作用关系实现了车辆、轨道、下部基础及房建结构的空间耦合振动分析,并通过相关现场调研和测试验证了模型的可靠性,分析了隧道埋深、建筑高度、楼板厚度、车辆运行速度等参数对建筑物振动特性和振动衰减的影响规律.研究发现,当隧道埋深在11.6m至21.6m间变化时,地表距离隧道中心线10~60m的范围存在振动放大区;隧道埋深从11.6m增大至21.6m,各楼层振级下降幅度为8.3~13.4dB,建筑物振动模态从以高阶振型为主转变成以低阶振型为主;地铁线附近建筑物层数越低,结构的振动响应越小;楼板厚度由0.15m增加至0.25m,各楼层振级下降幅度为0.9~7.4dB;车辆速度由80km/h降低至40km/h,各楼层振级下降幅度为5.7~6.9dB.可见,当地铁线路先于建筑物存在时,适当增加建筑物楼板厚度、降低行车速度、避开振动放大区是控制建筑物结构振动的有效方案.  相似文献   

10.
以合肥地铁3号线某区间隧道为工程背景,运用有限元数值模拟软件MADAS/GTS建立三维隧道施工的数值模型,计算隧道施工过程中引起的地表沉降。分析盾构施工在不同掘进距离条件下地表沉降的变形规律。模拟结果表明:在拱顶位置地表产生沉降最的大竖向位移。隧道下部围岩的最大隆起发生在拱底处;地表横向沉降范围随着开挖面的推进而不断加大,盾构施工的横向影响范围为隧道直径D的3倍。盾构施工造成的隧道下部围岩横向沉降影响范围约为洞径的2倍。  相似文献   

11.
针对某高速铁路列车在运营速度由200 km/h提升至250 km/h后,部分直线区段出现的车体横向低频晃动现象开展试验研究和仿真分析。首先对比分析提速前、后轨道动态检测数据在晃车区段和未晃车区段的时频特征以及乘坐舒适性,进而研究晃车区段的轮轨接触特性,通过建立车辆-有砟轨道动力相互作用模型,深入分析轮轨廓形、列车运行速度以及轨道平顺状态对高速铁路直线运行晃车问题的影响。研究结果表明:当列车提速至250 km/h后,晃车区段车体横向加速度出现明显周期性波动,振动频率为1.37 Hz,与提速前相比,车体横向加速度振动幅值增加了一倍,舒适性等级接近超限,乘坐舒适性明显降低;与采用CHN60&LMA廓形相比,采用实测轮轨廓形时的轮对蛇形运动加剧,轮对运动向一侧钢轨偏移,直接影响车体横向振动频率;列车运行速度提高后车辆系统响应对轮轨廓形的变化更为敏感,采用实测轮轨廓形,列车运行速度为250 km/h时的车体横向加速度谱峰较运行速度为200 km/h时的增大了1.6倍,较采用CHN60&LMA廓形时的增大了1.5倍;当列车提速至250 km/h后,轨道不平顺振动频率与轮对蛇形运动频...  相似文献   

12.
基坑开挖中既有下穿地铁隧道隆起变形分析   总被引:3,自引:0,他引:3  
为了研究下卧隧道的隆起变形规律及其影响因素,结合南京火车站站前广场龙蟠路隧道西段上跨地铁1号线双线盾构隧道的基坑支护工程,开展了坑内满堂加固、人工抽条和桩板支护等盾构隧道抗隆起措施设计.采用三维有限差分程序FLAC3D对基坑支护及其开挖的全过程进行了数值模拟,并通过与现场实测数据的对比分析,研究了地铁隧道的变形规律及其...  相似文献   

13.
高速列车的振动特性直接影响旅客乘坐的舒适性和列车运行的安全性.为了分析不同线路条件和运行速度对高速列车振动特性的影响,建立了车辆-轨道耦合系统模型,并以德国高速轨道谱和我国干线轨道谱产生的轨道随机不平顺作为耦合系统的激励,通过Newmark数值积分和Matlab仿真,计算了高速车辆在高速线路和提速干线条件下车体、构架、轮对等车辆各部件和轨道部件的振动响应.研究结果表明,随着列车运行速度的提高,高速车辆各部件振动响应均显著增大;线路条件对高速列车轮对及轨道系统振动的影响较对车体系统振动的影响明显.  相似文献   

14.
为了提供竖曲线上无砟轨道设计的理论依据,对列车动荷载对竖曲线桥上带减振扣件整体道床轨道动力学特性的影响进行研究。参考贵阳地铁1号线带减振扣件的整体道床轨道结构形式,基于多体系统动力学和轮轨系统动力学的基本原理,简化建立列车-轨道-桥梁系统垂向振动空间模型,计算分析不同速度、坡度代数差和桥梁竖曲线半径对列车和轨道结构动力学特性的影响规律。研究结果表明:从行车安全和舒适度角度出发,对于在竖曲线桥上带减振扣件的整体道床轨道,当行车速度为80 km/h时,建议有竖曲线的坡度代数差应小于18‰,无竖曲线的坡度代数差应小于4.5‰,竖曲线半径应大于2.5 km;当行车速度为100 km/h时,建议有竖曲线的坡度代数差应小于10‰,无竖曲线的坡度代数差应小于4‰,竖曲线半径应大于4 km;当行车速度为160 km/h时,建议有竖曲线的坡度代数差应小于5‰,无竖曲线的坡度代数差应小于2‰,竖曲线半径应大于5 km。  相似文献   

15.
当地铁隧道距离基坑较近时,基坑施工会对地铁隧道的围岩应力进行重分布,并引发隧道结构产生变形及内力变化,甚至影响隧道的正常运行.文章应用三维数值分析的手段,对基坑施工过程进行三维动态模拟分析,并结合现场实际监测数据,分析基坑开挖对邻近矿山法地铁隧道的影响.分析表明,基坑施工会使邻近矿山法地铁隧道结构产生变形,但变形量非常微小,不会影响到地铁隧道的结构安全性.其现场实测数据与有限元分析结果对比反映了隧道变形的规律,可以为以后的工程提供参考.  相似文献   

16.
地铁运行引起的南京鼓楼振动响应分析   总被引:1,自引:1,他引:0  
以南京地铁4号线鼓楼站为背景,研究鼓楼在地铁运行振动作用下城阙和碑楼的动力响应规律。基于英国铁路中心总结的列车荷载作用于岩石的振动荷载时程曲线,采用Midas GTS软件模拟地铁列车在不同速度下的荷载作用,对隧道-岩层-建筑体系进行了三维有限元分析,得到相应运行速度下鼓楼在二元结构中的振动响应规律。分析结果表明,地铁4号线单线运行时,模拟数值超标,鼓楼结构不安全,需进行减隔振措施。当列车行驶速度为40 km/h时,将有利于鼓楼文物保护。  相似文献   

17.
为研究不同轨底坡条件下实际运营地铁列车的轮轨接触特性,采用轮轨接触空间迹线方法计算分析了轨底坡对轮轨接触几何参数的影响,并建立某地铁B型车辆动力学模型,详细分析了不同线路条件下轨底坡对车辆动力学性能的影响规律.研究表明:LMCHN60轮轨匹配条件下,轨底坡在1/45~1/20范围内轮轨接触点分布连续,特别是直线段在轨底坡为1/20、曲线段在轨底坡为1/40时轮轨匹配性能良好;运营条件下车轮踏面凹磨造成等效锥度过大,轮轨接触点分布不连续,易造成异常晃车;曲线地段车轮踏面凹磨限制了轮对横向运动,导致轮对对中困难,轮轨接触匹配不良,易造成轮轨滚动接触疲劳.  相似文献   

18.
为了研究地裂缝场地下地铁列车振动荷载在围岩土体中的传播规律及其对隧道结构的影响,以西安地铁为工程背景,采用1∶20的几何相似比,开展了地铁隧道与地裂缝30°斜交的围岩动力响应物理模型试验,测试分析了在不同频率和不同振源位置下,围岩加速度及隧道应变的变化规律.结果表明:地铁列车振动荷载的频率为20 Hz时,围岩的振动响应最为明显;当振动频率大于40 Hz时,随着频率的增加,围岩振动响应变化不明显.地裂缝对列车振动荷载的传播有一定的影响,当振动位于上盘时,随着距离地裂缝越近,振动逐渐减小,在地裂缝处衰减更明显;当振动位于下盘时,同样随着距离地裂缝越近,振动逐渐减小,但穿越地裂缝进入上盘后,振动几乎没有衰减,即上盘对振动有一定的放大作用.研究结果可为研究地铁运营安全及地面建筑的防振减振控制提供参考.  相似文献   

19.
采用数值模拟方法,对列车在城际铁路隧道内运行过程中所产生的列车风变化过程进行分析,计算CRH2流线型列车在隧道内运行时,隧道内沿纵向不同位置列车风最大风速,进一步探讨隧道内列车风纵向和横向分布特性,并参考相关标准分析隧道内轨侧疏散通道、轨下疏散通道进行人员疏散时的安全性.结果表明:车头风速梯度很大,且在车头侧面空间出现风速转向,环隙空间内气流流动为典型的Couette湍流流动和Poiseuille湍流流动的叠加,车尾风速最大,对轨侧人员安全最为不利;CRH2流线型车以200km/h速度运行时,轨侧疏散通道最大风速17.2 m/s,轨下疏散通道口及通道内最大风速分别为15.2和9.5 m/s.按照16.9 m/s风速标准进行判断,人员可从轨下疏散通道进行疏散.  相似文献   

20.
地铁列车的节能优化操纵是降低能耗的重要途径。针对地铁列车在不同工况与线路条件下的运行特点,对其进行动力学分析。参照线路纵断面化简原理对线路进行简化,并根据节能优化原则与列车站间运行的约束条件建立实际路况下的能耗模型。引入改进量子粒子群优化算法,将列车运行速度、加速度等参数进行实数编码,通过迭代寻优与变异操作求解列车站间运行的最低能耗,并获取列车最优运行速度及工况转换点等特征参数。通过南宁地铁一号线某站间线路的实例仿真证明,该方法在保证列车舒适性、安全性与准点停靠的前提下,降低列车运行能耗达9.21%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号