首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 313 毫秒
1.
上海软土地区地铁车站深基坑的变形特性   总被引:6,自引:0,他引:6  
通过对上海软土地区地铁车站基坑实测数据的分析,探讨了基坑围护结构变形、坑外土体变形及地表沉降的一般规律.结果表明:上海软土地区地铁车站基坑围护结构的最大侧向位移为开挖深度的0.04%~0.6%,平均值为0.3%;围护结构侧向变形通常为深层凸鼓形,围护结构最大侧移点深度一般位于开挖面以上1.5 m至开挖面以下7 m;基坑周边最大地表沉降为开挖深度的0.05%~0.7%,为围护结构最大侧向变形的0.4~1.0;采用钻孔灌注桩结合高压旋喷桩止水帷幕的地铁车站基坑的变形控制通常优于地下连续墙和SMW工法.  相似文献   

2.
深基坑开挖对周边地表沉降变形的影响   总被引:1,自引:0,他引:1  
为有效控制基坑周边地表的沉降变形,应用弹塑性大变形理论与有限差分理论,对哈尔滨地区桩-锚支护形式下深基坑开挖引起的周边地表沉降进行了数值模拟,分析了开挖深度、锚杆层数、建筑物距离对基坑周边地表沉降变形的影响规律及基坑周边地表沉降变形的量化范围。结果表明,基坑周边地表的沉降量与沉降范围随锚杆层数的增加而减小;建筑物的存在不仅增大了地表的沉降量,而且使基坑周围地表的最大沉降区向基坑方向移动;当建筑物与基坑的距离小于1.0倍基坑设计开挖深度时,建筑物距离对地表沉降变形的影响较明显;基坑开挖对周边地表的影响范围基本在与基坑边缘相距1.5倍基坑设计开挖深度范围之内。  相似文献   

3.
上海软土地区深大基坑卸荷变形机制   总被引:2,自引:0,他引:2  
通过室内K0试验和数值分析以及工程实测,并结合近年来上海软土地区深大基坑的工程实践,对深大基坑卸荷变形的影响因素和影响区域特性以及坑周的地表沉降机制进行了研究,对基坑卸荷变形的影响范围按变形特性进行分析和归纳.结果表明:上海软土深大基坑卸荷变形的影响深度范围为坑底以下2.5倍开挖深度;当基坑开挖宽度达到5倍开挖深度以上时,在围护结构底与影响深度范围内存在深层土体滑移带,坑外地表沉降影响范围扩大到3.5倍开挖深度以上,且地表最大沉降值是基坑侧向变形最大值的1~2倍;深大基坑与窄条基坑的变形特征有明显区别.针对深大基坑卸荷变形的特点,提出了减少和控制其卸荷变形的设计对策和工程措施,以保护周边设施和环境,为软土地区的深大基坑工程设计、施工提供借鉴和参考.  相似文献   

4.
基于新建天津地铁5号线与既有地铁1号线十字换乘车站——下瓦房站的现场实测数据,研究深基坑开挖与既有车站十字相交时,基坑围护结构、墙后地表和既有车站的变形规律.研究结果表明:围护结构最大水平位移约0.064%H(H为基坑开挖深度),位于地表下约0.63 H.墙后地表最大沉降约0.025%H,位于墙后约0.71 H,沉降槽影响范围约为2 H.墙后地表最大沉降与围护结构最大水平位移的比值介于0.38~1.04之间,平均约为0.77.与基坑开挖方向交叉的既有地铁车站竖向上浮,水平方向外凸,以水平变形为主.既有车站周围止水加固和加固墙后软弱土层可显著减小既有结构变形.  相似文献   

5.
基于上海地区某深基坑工程施工方案,建立了紧邻运营地铁隧道的基坑开挖变形影响的有限元数值模型,重点分析了基坑围护支撑的数量和位置、基坑土体加固、地铁隧道位置、隧道下卧层土体和地下连续墙刚度对基坑周边地层以及隧道变形的影响.结果表明:基坑围护支撑数目及位置的选择对周边地层和隧道变形产生影响较大;隧道的存在对土体沉降具有"遮拦效应",在一定程度上能够减少坑外土体沉降;增加下卧层土体模量和地下连续墙的刚度可减少坑外地表沉降,有效控制地铁隧道的变形.  相似文献   

6.
依托横琴口岸大规模基坑群工程,通过现场监测、数值计算和统计分析相结合的手段,揭示珠海深厚软弱淤泥地层中大直径桩插入比对基坑变形特性的影响。横琴口岸基坑群开挖深度为9.2~13.3 m,采用直径为1 500 mm或1 600 mm、插入比为2.50~3.70的超长大直径灌注桩作为围护结构。研究结果表明:受淤泥层分布的影响,围护结构的侧移模式有悬臂式、鼓肚式以及弓型3种,侧移存在明显的滞后性和时间依赖性。围护结构最大侧移、最大侧移深度以及地表沉降均随淤泥层厚度的增大而增大,地表最大沉降点与围护结构之间的距离为0.75H_e~1.00H_e(H_e为基坑开挖深度);围护结构最大侧移随插入比的增大而呈非线性减小,近似呈"三段线"关系:当插入比大于1.60时,最大侧移将稳定在0.22%H_e~0.40%H_e;当插入比小于1.20时,基坑存在踢脚破坏的风险;最大侧移深度随着插入比的增大而逐渐减小,最后稳定在1.15H_e~1.35H_e;最大沉降点与围护结构之间的距离受插入比的影响较小。相比于其他软土地区的围护结构,插入比大多处于0.70~1.00,珠海横琴岛内基坑由于存在深厚淤泥层,所需的插入比明显较大。  相似文献   

7.
含深厚海相软土层基坑开挖变形影响因素分析   总被引:1,自引:1,他引:0  
支护结构对软土基坑开挖变形具有重要影响,结合深圳某软土深基坑工程实例,通过室内三轴试验测定深圳地区典型海相沉积软土的修正剑桥模型参数,采用FLAC~(3D)有限差分软件模拟基坑开挖过程,对基坑变形的影响因素进行分析。数值模拟结果表明,在围护结构入土深度、支撑体系刚度、围护结构刚度、锚索预应力几个因素中,对围护结构水平位移影响最大的因素是支撑刚度,对坑外地表沉降影响最大的因素是锚索预应力;提高围护结构刚度能较为显著改善变形,但随着围护结构刚度的增大,这种影响逐渐减小。研究结论可用于软土基坑支护设计优化工作,对同类工程有一定的借鉴作用。  相似文献   

8.
以上海软土地区紧邻历史保护建筑的超大地下综合体施工为例,建立考虑土体小应变特性的三维有限元计算模型,研究分隔型基坑变形特性及土体应力路径;将数值模拟结果与现场实测数据进行比对以检验模型参数取值的合理性,并基于此模型进行多工况计算分析。结果表明:仅靠优化基坑开挖顺序对基坑变形控制作用有限且不全面,有必要考虑地下结构回筑引起的基坑支护刚度和边界条件变化;先开挖小基坑并完成其地下结构回筑后再施工较大基坑的施工方案效果最优,与较不利工况相比可减小紧邻敏感建筑物侧围护结构最大侧向变形30 %;不同开挖顺序、地下结构施工引起的边界条件变化,以及不同排水条件使得坑内外土体应力状态复杂多变,其中坑内土体在不同工况下呈现不同应力路径,坑外土体则呈现多次卸荷的应力路径;当应用伺服式预应力钢支撑时,坑外土体表现出先水平卸荷而后加荷的应力路径,围护结构变形控制在开挖深度的0.1 %内,可有效保护周边敏感建筑物的安全。  相似文献   

9.
以济南地铁邢村站基坑开挖支护为工程依托,通过理论分析、数值模拟和监控测量相结合的方法,首先在理论方面阐明基坑变形的理论依据,然后利用有限元软件ABAQUS对邢村站基坑开挖的全过程进行了模拟,并结合现场的监测结果,对基坑开挖过程中围护结构的水平与竖向位移和基坑周边的地表沉降以及支撑结构的轴力变化进行了分析。研究结果表明:随着基坑的开挖,基坑顶部呈现出逐渐向坑内运动的趋势,并且随着开挖过程中支撑结构的施加,围护结构整体呈现出向坑内变形的“弓”形分布,在支撑施加的部位,变形明显减小;由于基坑开挖土体的卸荷,围护结构出现隆起变形;地表沉降曲线呈现“U”形分布,并且随着基坑开挖深度的逐渐增加,地表沉降最大值逐渐增大,基坑开挖的影响范围基本在0~20 m内;各道支撑的轴力呈现出逐渐增加的趋势,下部的支撑发挥作用的效应更明显,并且下部支撑轴力大于上部支撑的轴力。  相似文献   

10.
为了确保基坑开挖中周边环境的安全,以西安地铁某车站深基坑开挖为例,运用ABAQUS软件建立三维模型模拟开挖对周边地表沉降和围护结构变形的影响,重点研究开挖中周边地表的沉降分布规律和围护结构变形的规律,并与现场实际监测数据进行对比分析。结果表明:地表沉降的实测值比模拟计算值大,但变化趋势基本一致;在基坑开挖过程中,地表最大沉降位置距离基坑边缘约11 m处,最大值为3.298 mm;围护结构水平变形沿开挖深度的变化曲线呈抛物线形,最大水平位移位于基坑最大开挖深度的 1/2 处,最大水平位移为11.05 mm,距基坑长边边缘0~25 m及短边边边缘0~22 m范围内的地表沉降最大,施工监测中应重点关注。  相似文献   

11.
通过使用Midas有限元软件建立模型,通过改变设计参数,对基坑及周围环境的影响规律进行探究,研究设计参数改变对基坑及周围环境造成的影响.结果表明:逆作法基坑施工过程中,基坑周边地表沉降曲线的形状为凹陷形,最大沉降位置大约在基坑边外0.57倍基坑深度处,2倍基坑深度为基坑开挖对于周围地表影响的主要范围.当存在既有建筑时,浅基础周围地表最大沉降相较于无建筑时增大0.5倍,临近桩基础周围地表最大沉降增大37.9%;围护结构刚度在一定范围内增大可以有效减少变形,并且选择合理的一次开挖深度可以使得基坑开挖对周围环境产生的影响有效减小.  相似文献   

12.
为研究软土地区城市中心区域基坑开挖对临近道路地表沉降的影响,围护结构顶部变形规律,内支撑轴力变化趋势以及内支撑对道路地表沉降和围护顶部变形的影响性状,以上海地区陶家宅深基坑工程为背景,通过对该深基坑开挖过程中围护结构顶部水平位移、垂直沉降,临近道路地表沉降,内支撑轴力进行信息化监测,并对实测数据进行了分析。结果表明:位于基坑中部位置的围护结构,其顶部水平位移的变化速率及最终位移量都要比处于坑角位置处的围护结构相应的值要大,且二者差值较大。基坑临近道路地表在不同的工序下不是以单一沉降特征进行沉降,而是不同特征交替出现。由此可见:内支撑可较好的约束围护结构顶部变形以及道路地表沉降,在开挖时要缩短暴露时间及时加设支撑。基坑中部的变形及沉降均要大于角部位置处的变形与沉降,在施工时要对该位置做好防护工作。  相似文献   

13.
以宁波市地铁1号线东环南路站基坑工程为研究对象,分析了基坑工程围护结构变形和外围地表沉降的变化规律.结果表明,基坑开挖对围护结构变形及外围土体沉降的影响具有明显的时间效应,施工过程中应严格控制深层土体的开挖时间,并需要及时架设支撑及浇注混凝土底板.同时,结合有限元数值计算和位移转化系数的方法推算了考虑软土强蠕变性的基坑变形长时位移,所得结果与其监测结果相吻合,从而验证了所采用的监测方法的可行性.
  相似文献   

14.
本文以某软土区止水帷幕深基坑监测为背景,使用COMSOL Multiphysics对基坑分层建模并建立二维渗流-固结耦合模型,研究流固耦合模型在软土地区基坑数值模拟的可行性,基坑渗流模型的建模方法,并分析不同隔水帷幕建模方法对基坑水平位移及坑外地表沉降的影响.研究表明:COMSOL Multiphysics模拟基坑变形数值与实际监测数值较吻合,降水渗流作用对基坑变形具有很大影响.止水帷幕对于减少坑外水位下降和控制地表沉降有显著作用.设置隔水帷幕后,地面沉降量减小,而缺点是导致围护结构变形增大.最后模拟了不同深度隔水帷幕对坑外地表沉降的影响,认为隔水帷幕对坑外沉降改变量有先增大后减小的规律,深度过小或者过大对沉降量的控制效果不好.弱透水层交界处有沉降改变量的极大值,弱透水层处沉降量改变量有明显骤减.  相似文献   

15.
在敏感环境下施工时,为减小基坑开挖对临近结构的影响,常将深大基坑用分隔墙分割成若干个小基坑。以上海软土地区某工程为背景,借助数值计算,分析深大基坑分区开挖时分区宽度、分区开挖次序和分隔墙插入比对临近被保护结构一侧地下连续墙和墙后土体变形的影响。研究结果表明:当先远后近(远近相对于被保护结构而言)方式开挖,分区宽度等于基坑开挖深度时,分区开挖的作用效果最好,此时墙体水平位移和墙后地表沉降比未分区时分别小39%和41%;当先近后远的方式开挖时,分隔墙离基坑边缘越近,分区开挖的作用效果越明显;在同等分区宽度下,先远后近开挖所引起的墙体变形和墙后地表沉降比先近后远开挖的低;分隔墙的插入比对基坑围护墙位移和墙后土体沉降影响比较小。  相似文献   

16.
针对基坑开挖过程围护结构变形稳定性问题,基于有限差分数值方法,以合肥地铁大东门车站为研究对象,分析了基坑开挖过程中深基坑土体和围护结构的内力及变形情况.研究表明:随着深度的加大,地下连续墙围护结构水平变形不断增大,墙体向基坑内不断发展变形,形态上呈凸肚状;基坑开挖过程中最大主应力和最大主应力差均在围护结构上,最大剪应力和塑性区主要分布在基坑的底部和周边地表;基坑交界处的桩轴力较大,并且轴力变化曲线呈折线形.  相似文献   

17.
为研究开挖方式对深基坑变形分析与施工优化,采用有限元软件FLAC3D对上海某深基坑开挖进行模拟.通过改变开挖方式,在数值计算中设置若干种工况,研究开挖过程中的基坑围护结构位移变化、地表沉降.研究结果表明:3种不同的开挖方法对于基坑变形的控制能力依次是台阶式退挖、跳挖、竖向顺序分层开挖.在采用了新的开挖方式后,基坑周边的最大沉降值也由之前的10 mm左右减小到8 mm左右,基坑围护结构最大水平位移由原来的45 mm减小到40 mm,说明新的开挖方式有效的控制了深基坑变形.  相似文献   

18.
为研究软土地层中基坑开挖卸荷时效及其对邻侧隧道影响,设计并实施了相似比为1:20的物理模型试验,得到了基坑围护结构变形、地表沉降、坑底隆起、隧道竖向变形、隧道水平变形以及隧道断面收敛变形等数据。研究结果表明:基坑开挖引起的围护结构最大侧向变形为0.61%H(H为基坑深度),大于上海软土地区地铁车站基坑围护结构最大值的上限0.50%H;分步开挖过程中的墙体侧向变形和地表沉降具有明显的时间效应,卸荷时效对基坑变形的影响随开挖深度增加而增强;基坑开挖引起隧道变形以朝向坑内的水平变形为主,同时伴随少量朝上的竖向变形;隧道侧向变形与相同深度处围护结构侧向变形大致呈线性关系,据此可预估后续开挖引起的隧道侧向变形;基坑开挖引起邻近隧道产生径向收敛变形,隧道断面呈“横向伸长、竖向压缩”的特点,横向收敛约为竖向收敛变形的1.7倍;当隧道与基坑开挖面的竖向净距在0.2H~0.5H时,基坑开挖卸荷引起的隧道变形响应十分敏感,隧道竖向变形随坑底隆起增加而显著增加。  相似文献   

19.
基于考虑土体排水条件的摩尔库伦本构模型,采用有限差分软件FLAC3D建立准三维数值模型,模拟了有无邻近地下结构的基坑开挖过程并进行对比分析,得到了邻近地下结构深基坑的围护结构的受力变形特性.进一步研究了基坑围护结构土压力分布和水平位移与基坑和地下结构间距的关系,揭示了地下结构对邻近基坑围护结构受力变形影响的机理.结果表明,地下结构使坑间土体产生土拱效应而减小邻近基坑围护结构的变形;围护结构最大水平位移随着坑间距减小呈非线性减小;间距的变化会影响坑内外土体的变形受力;既有地下结构与邻近基坑的临界间距为1.5倍开挖深度.  相似文献   

20.
以海口市某砂与淤泥互层地基深基坑工程为背景,通过对其施工期间动态监测数据的分析,总结了该深基坑工程的支护结构变形、周边地表沉降变形及水位变化等特征.分析结果表明:支护结构变形主要发生在基坑开挖阶段,最大水平位移位于长边中心处;基坑开挖的影响范围主要集中于0~2 H处(H为基坑开挖深度),最大可延伸至距基坑边缘约为3 H处,产生最大沉降量位置约为支护结构后0.7~0.9 H处;基坑开挖引起的周边水位变化较小,10月份水位变化波动较大,11月后水位比较稳定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号