首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微波法污泥活性炭的制备技术研究   总被引:1,自引:0,他引:1  
以城市污水处理厂污泥为原料,考查了固液比、活化剂浓度、浸渍时间和活化时间等因素对氢氧化钾活化-微波加热制备污泥活性炭碘吸附值和产率的影响.在单因素试验的基础上进行正交试验,获得了此工艺制备污泥活性炭的最佳条件,即:固液比1g:1.5m L,氢氧化钾浓度0.40mol·L-1,浸渍时间24h,活化时间420s.此工艺条件下制备的污泥活性炭碘吸附值为537.63 mg·g-1,比表面积为354 m2·g-1,产率为74.09%,吸附性能和产率均优于传统方法制备的污泥活性炭.  相似文献   

2.
以城市污水处理厂污泥为原料,研究了氢氧化钾活化-微波加热制备污泥活性炭的工艺条件,考查了固液比、活化剂浓度、浸渍时间和活化时间等因素对活性炭碘吸附值和产率的影响。在单因素试验的基础上采用正交试验,得到试验室条件下微波法制备污泥活性炭的最佳工艺条件,即:固液比1g:1.5mL,氢氧化钾浓度0.40mol.L-1,浸渍时间24h,活化时间420s。此工艺条件下制备的污泥活性炭碘吸附值为537.63 mg.g-1,产率为74.09%。  相似文献   

3.
对废弃一次性筷子的综合利用进行了探索性的实验研究,以一次性筷子为原料制备活性炭,采用条件实验比较氯化锌法和磷酸法对一次性筷子活化效果的影响。结果表明,磷酸法制备出的活性炭性能优于另外一种方法。以磷酸为活化剂,研究了浸渍比、活化温度、活化剂浓度、活化时间对活性炭的得率和碘吸附值的影响。实验结果表明,在最佳工艺条件:活化剂浓度50%,活化温度500℃,浸渍比3:1,活化时间60min,浸渍时间12h下,所制得活性炭的碘吸附值为863.10mg/g。  相似文献   

4.
以林业废弃物杨木屑为原料,采用正交试验法探讨以磷酸为主活化剂,浓硫酸为辅助活化剂,在不同工艺条件下制备活性炭,测定其亚甲基蓝脱色力和碘的吸附值,考虑活化因素对活性炭得率和吸附性能的影响,确定最佳工艺参数.试验结果表明:磷酸-硫酸活化法制备木屑活性炭的最佳工艺条件为浸渍比1∶2.5,浸渍浓度60%,活化时间90 min,活化温度550℃.  相似文献   

5.
本研究以茶梗为原料,以氯化铜为活化剂,化学法制备载铜茶梗活性炭,采用响应面法优化所制备活性炭的吸附性能.在单因素实验的基础上选取浸渍比、氯化铜浓度、活化温度、活化时间为影响因子,利用Box-Behnken中心组合试验(简称BBD)进行4因素3水平的试验设计,以活性炭得率和碘吸附值作为响应值,进行响应面分析.结果表明,制备活性炭的最佳条件为:氯化铜浓度为25%、浸渍比为4、活化温度为600℃、活化时间为5 h,在此条件下,制得的活性炭的碘吸附值为453 mg/g、得率为47.09%.在优化条件下,制得的活性炭的碘吸附值和得率与预测值基本符合,所以据响应面法原理,对相关影响因素进行试验优化设计可行.  相似文献   

6.
以造纸黑液木质素为原料,采用化学及物理活化法制备活性炭,并对其吸附性能进行分析。实验结果表明,对于磷酸活化剂而言,制备活性炭并不需要进行二次活化,而对于氯化锌活化剂则需要进行二次活化。磷酸活化剂制备活性炭的最佳条件为活化温度550℃、活化时间2 h、浸渍比2∶1,而氯化锌活化剂最佳活化条件为一次活化温度550℃、活化时间2 h、浸渍比2∶1,二次活化二氧化碳流量80 mL/min、活化时间30 min、活化温度850℃,所得到的活性炭符合木质净水用活性炭一级品的标准。二氧化碳二次活化,降低活性炭的产率,但是增加了活性炭中中孔及大孔的比例。  相似文献   

7.
混合碱法甘蔗渣基活性炭的制备工艺研究   总被引:2,自引:0,他引:2  
江恩源  廖钦洪  黄颖  梁冬莲  蒙冕武 《广西科学》2009,16(2):177-179,192
采用正交试验方法研究影响混合碱法制备甘蔗渣基活性炭性能的4种工艺因素:活化剂配比、料液比、活化温度及活化时间。结果表明,影响甘蔗渣活性炭吸附性能的工艺因素的强弱秩序为:活化时间、活化温度、活化剂配比、料液比;样品的亚甲基蓝吸附值随着活化温度的升高或活化时间的延长而呈先增后降的变化规律。其最佳工艺为:活化剂配比(KOH:NaOH)7.4:1、料液比1.18:1、浸渍时间24h、活化温度923K、活化时间0.42h。经优化工艺制得的甘蔗渣基活性炭样品的亚甲基蓝吸附值为12.7ml/0.1g,为活性炭国家标准(GB/T13803.4—1999)中一级品的1.4倍。  相似文献   

8.
以城市污水处理厂产生的脱水污泥为原料,采用化学活化法并结合传统的直接加热技术制备脱水污泥活性炭,研究了影响脱水污泥活性炭吸附特性的各种因素.研究结果表明:制备脱水污泥活性炭的优化条件是活化剂为5 mol·L-1ZnCl2+5 mol·L-1H2SO4混合溶液,固液比为1∶2.5,复配比为2∶1,浸渍时间为24 h,活化温度为600℃,活化时间为20 min.制备的脱水污泥活性炭碘吸附值为939.7 mg.g-1,产率为69.03%,其吸附特性优于商品活性炭.  相似文献   

9.
以K_2CO_3为活化剂,辣椒秸秆为原料制备活性炭,研究活化温度、活化时间、浸渍比和浸渍时间等影响因子对活性炭孔结构的影响.以比表面积、总孔容及碘吸附值为表征指标,对活性炭孔结构进行分析.结果表明,在给定的取值范围内,随着影响因子值的增加,比表面积和碘吸附值都呈现先升高后降低的趋势.在800℃活化温度、120min活化时间、2∶1浸渍比、24h浸渍时间的最佳条件下,制备的活性炭比表面积和碘吸附值的最大值分别达到1 753.983m~2/g,1 754mg/g,总孔容为0.893cm~3/g,平均孔径2nm,微孔率达84%.  相似文献   

10.
以污水处理厂剩余污泥为原料,以KOH为活化剂采用化学活化法制备污泥活性炭。研究了碳化时间、碳化温度及活化剂浓度等条件对污泥活性炭碘吸附值和产率的影响。通过正交实验确定了污泥活性炭的最佳制备条件。结果表明,以碘吸附值作为主要评价指标,制备条件对污泥活性炭的碘吸附值影响大小的顺序为:炭化时间活化剂浓度炭化温度。制备污泥活性炭的最佳工艺组合为炭化温度400℃,炭化时间40 min,活化剂浓度为0.3 mol/L,污泥活性炭的碘值为308.7 mg/g。  相似文献   

11.
以玉米芯为原料,采用磷酸活化、微波辐照的方法制备活性炭,以碘吸附值为指标考察玉米芯活性炭的吸附性能.在单因素实验的基础上采用响应曲面法考察微波时间,浸渍时间,磷酸体积分数,液料比等因素对玉米芯活性炭吸附性能的影响,确定了最佳工艺参数.结果表明,各因素对碘值的吸附性影响的显著性表现为:微波时间磷酸体积分数浸渍时间液料比,通过响应面法优化的最佳工艺条件为,微波时间8 min,浸渍时间18.79 h,液料比20∶1(m L/g),磷酸体积分数为57.25%,该条件下制备的活性炭的碘值为2 188.09 mg/g.  相似文献   

12.
以花生壳生物质炭(PSB)为原料,采用KOH活化法制备了比表面积为461 m2·g-1的花生壳活性炭(K-PSB),利用氮气吸附脱附等温线、SEM等对样品进行了表征,并将孔隙结构发达的花生壳活性炭用于重金属Cd2+的吸附,考察反应时间、溶液p H值、花生壳活性炭的投加量等对Cd2+吸附的影响。结果表明:随着吸附时间的推移,Cd2+的吸附量逐渐增加直至达到平衡,当Cd2+浓度为50 mg·L-1,PH值等于6,投加量为1 g·L-1时,花生壳活性炭对Cd2+的吸附效果最佳;该吸附是一个吸热反应,随着温度的增加,吸附量逐渐增大。  相似文献   

13.
响应曲面优化中药材废渣基活性炭的制备   总被引:1,自引:0,他引:1  
采用中药材废渣为原料,以KOH为活化剂,选用响应曲面分析方法设计实验,制备活性炭.以碘吸附值和亚甲基蓝吸附值为响应值,对影响KOH活化法最重要的3个因素浸渍比、活化温度以及活化时间进行优化.结果表明,对于碘吸附值的影响,活化温度浸渍比活化时间,对于亚甲基蓝吸附值的影响,浸渍比活化温度活化时间.所得最优条件为浸渍比3、活化温度744℃、活化时间75min,在此条件下制备的活性炭碘吸附值和亚甲基蓝吸附值分别为723.75mg/g、350.82mg/g,与理论模型值非常接近,说明基于响应曲面法所得的最佳工艺参数准确可靠.通过SEM、热重分析可知该活性炭具有孔隙结构发达、热稳定性高等特点.  相似文献   

14.
水蒸气活化制备生物质活性炭的实验研究   总被引:3,自引:0,他引:3  
以稻壳、花生壳和玉米芯为原料,采用物理活化法以水蒸气为活化剂制备得到活性炭.分析了水蒸气活化机理,并通过对活性炭得率高低、亚甲基蓝脱色效果强弱的比较,讨论了活化时间(t)、活化温度(T)和水蒸气流量(QH2O)对活性炭的炭活化得率(Cyield)和吸附性能的影响.实验结果表明:随着t的延长和T的升高,3种原料制得的Cyield不断降低,活性炭的吸附性能先升高后降低;随着QH2O的增加,Cyield先降低后升高,活性炭的吸附性能先升高后降低.通过比较,得出玉米芯是3种原料中最佳的制备活性炭的物质,其最佳工艺条件为T=800 ℃,t=90 min 和QH2O=15 mL/h,所制备的活性炭得率为26.18%,亚甲基蓝吸附值为150 mL/g,比表面积为924.48 m2/g,孔平均尺寸为2.4 nm.  相似文献   

15.
采用微波加热法,以制药厂污泥为原料,氯化锌为活化剂制备污泥活性炭.结果表明,微波功率、辐照时间和氯化锌浓度对污泥活性炭吸附性能具有较大的影响.制备污泥吸附剂的适宜条件为:干污泥与CuSO4质量比为20∶1,ZnCl2浓度为4 mol/L,微波功率为464W,辐照时间为5min.利用该活性炭处理制药废水,脱色率和COD去除率分别达到90.2%和91.6%.  相似文献   

16.
为了获得农林废弃物油茶果壳制备活性炭的新方法,以磷酸为活化剂,微波内热方式进行炭化-活化一步法制备油茶果壳基活性炭的研究,考察了原料粒度、浸渍比、磷酸浓度、微波时间、微波功率和浸渍时间对活性炭碘吸附性能的影响,并以自制油茶果壳基活性炭为吸附剂进行了茶油毛油脱色。结果表明,油茶果壳基活性炭制备的适宜条件为:原料粒度0.25~0.38 mm,浸渍比1∶2,磷酸浓度60 wt%,微波时间18 min,微波功率700 W,浸渍时间20 h,在最适宜条件下所得活性炭的比表面积为1 169.69 m2/g,脱色茶油的色泽为罗维朋色号黄(Y)11和红(R)1.0,符合国标油茶籽油GB/T 11765-2003对一级油品的色泽技术要求。研究结果可为油茶主副产业链的综合利用提供理论依据。  相似文献   

17.
以煤粉和木屑为原料,不添加粘接剂,采用磷酸活化法制备了木质煤基成型活性炭。利用单因素分析法对成型工艺和活化工艺进行了研究。结果表明:成型炭质前驱体加工最佳工艺为磷酸浸渍浓度30%、木屑:煤粉:磷酸质量比为1∶4∶3,制得的成型炭质前驱体强度为93%。活化工艺为:浸渍比1∶1、活化温度550℃、活化时间2.5 h。成型活性炭亚甲基蓝吸附值为210 mg·g-1、碘吸附值为865 mg·g-1,比表面积1 134 m2·g-1。该方法为煤基成型活性炭的制备找到了新的途径。  相似文献   

18.
磷酸盐活化法制备椰壳纤维基活性炭研究   总被引:3,自引:0,他引:3  
采用正交试验设计实验方案,以椰纤维为原料,经炭化、活化等处理,研究磷酸盐活化制备高比表面积活性炭的实验方案与工艺条件,得到比表面积高,孔隙发达,吸附效果优异的活性炭.考查了活化剂配比、活化温度、活化时间、升温速率等因素对活性炭吸附性能及产率的影响,得到最佳的活化方案与工艺条件.并在实验的基础上探讨了活性炭的活化机理.  相似文献   

19.
以黄芪废渣(AS)为原料,用KOH为活化剂制备黄芪废渣活性炭(ASC)并用于对水溶液中Cu~(2+)和Cd~(2+)的吸附.考察了KOH质量浓度、活化时间、活化温度和浸渍比(活化剂体积(mL):黄芪废渣质量(g))等因素对黄芪废渣活性炭碘吸附值和得率的影响;通过扫描电子显微镜、比表面积测定和X射线衍射等方法对黄芪废渣活性炭进行表征.结果表明,在KOH质量浓度为20%,浸渍比3∶1,温度为600℃,活化炭化时间为80 min时,制备的黄芪废渣活性炭的比表面积为1 519.53 m~2·g~(-1),对重金属离子Cu~(2+)和Cd~(2+)在20℃,pH分别为5.0和6.0时饱和吸附量分别为1.98和1.04 mmol·g~(-1).  相似文献   

20.
K2CO3活化法制备椰壳活性炭   总被引:6,自引:0,他引:6  
以椰壳炭化料为原料,采用K2CO3活化法在不同操作条件下制备椰壳活性炭,探讨了K2CO3活化实验中K2CO3与炭化料质量比、活化时间和活化温度对活性炭得率、活性炭亚甲蓝吸附值和苯酚吸附值的影响.实验结果表明,K2CO3与炭化料质量比和活化温度是K2CO3活化法制备椰壳活性炭最重要的影响因素.综合考虑活性炭的得率和活性炭吸附性能受活化操作参数的影响规律,探讨了K2CO3活化法制备椰壳活性炭的最优操作参数,得到了实验范围内的最佳5-艺条件为:K2CO3与炭化料的质量比为2:1,活化温度为800℃左右,活化时间为120min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号