首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
影响聚吡咯铝电解电容器漏电流的因素及改进措施   总被引:3,自引:0,他引:3  
利用电化学沉积的方法在腐蚀并赋能的铝箔试样表面合成了聚吡咯,并制备了聚吡咯铝电解电容器。在聚吡咯被覆的过程中,由于聚合溶液的毛细现象使电容器的阴极与阳极之间形成了微小的电气通路,另外聚合溶液对铝氧化膜有一定的腐蚀作用,导致氧化膜的缺陷增加,这两种情况是聚吡咯电解电容漏电流增加的根本原因。研究发现,采用合适的阻断材料和缩短聚合时间均可以有效地降低它们的影响。通过热重-差热分析,说明了在贮存过程中环境对这种电容器漏电流的影响,并提出了保持该电容器长期性能稳定的措施。  相似文献   

2.
硅烷自组装膜对PPy固体铝电解电容器的影响   总被引:1,自引:0,他引:1  
通过对比在固体铝电解电容器多孔性绝缘Al2O3膜表面是否进行硅烷偶联剂预处理后化学聚合得到的导电聚吡咯(PPy)薄膜的连续性、附着性与电导率以及所得PPy固体铝电解电容器的性能指标,探讨了硅烷自组装膜对PPy薄膜与PPy固体铝电解电容器性能的影响及硅烷自组装膜在多孔性Al2O3膜表面的形成机理与PPy薄膜在硅烷自组装膜上的成膜机理.PPy薄膜的电导率从5.4s·cm-1提高到了16.6S·cm-1,PPy固体铝电解电容器的损耗角正切tgδ≤0.06(120Hz,20℃),漏电流IL≤〈0.04CV(或3μA).  相似文献   

3.
表面活性剂对导电PPY固体铝电解电容器性能的影响   总被引:1,自引:0,他引:1  
研究了表面活性剂对以导电聚吡咯(PPY Polypyrrole)为阴极的固体铝电解电容器性能的影响.由于电容器的介质膜Al2O3表面状态对沉积其上的PPY薄膜电导率及电容器的电性能影响较大,因此,在对Al2O3介质膜的表面形貌、带电状态和润湿等表面状态进行研究分析的基础上,提出了一种在化学聚合PPY膜时在吡咯单体溶液中添加表面活性剂的新方法.实验结果表明,化学聚合时添加表面活性剂可以使PPY在凹凸不平Al2O3表面充分均匀成膜并且提高了电导率(例如,在比容同为4.3μF/cm2阳极铝箔上的Al2O3膜表面沉积PPY薄膜时,添加与不添加表面活性剂形成的PPY薄膜电导率分别为16.6S/cm和5.4S/cm),所制成的电容器损耗角正切值可降低至0.026,漏电流减小,漏电流常数k值达0.04μA/(μF·V),并具有优良的阻抗频率特性和温度特性.  相似文献   

4.
电聚合条件对聚吡咯钽电解电容器容量与损耗的影响   总被引:1,自引:0,他引:1  
研究了导电聚吡咯在多孔Ta/Ta2O5阳极体(1μF/16V)表面的制备方法,采用恒电流电聚合法在该阳极体表面沉积一层导电聚吡咯作为电解电容器的阴极,着重探讨了支撑电解液的组成,阳极电流的大小及其施加方式对所形成的电容器容量和损耗因子的影响,结果表明:吡咯单体和支撑电解质的浓度比保持在3至4之间对电容器的性能是有益的,而过高浓度的吡咯单体和支撑电解质则会产生不利影响;随着阳极电流的增大,电容器的性能变差,因此阳避孕药电流不宜超过1.2mA.在以乙腈和1,2-丙二醇碳酸酯的混合物为溶剂的支撑电解液中,采用先施加大的阳极电流而后施加小电流的方法,可以获得平均容量达到额定容量98%以上且损耗因子较小(tgδ)小于1.3%)的样品。  相似文献   

5.
在导电玻璃表面电化学聚合聚吡咯,通过改变掺杂剂和膜层数得到三种聚吡咯膜,利用Hitachi-530扫描电镜观测其表面性能,在阳极电刺激下,使用光学显微镜等观察接种神经细胞的黏附数量。由此得出:聚吡咯表面性能和医学性能可以通过改变掺杂剂,膜层数来进行调整。  相似文献   

6.
通过化学聚合和电化学聚合法在棉织物表面沉积聚吡咯,分别制备了两组聚吡咯/棉导电织物.测试了导电织物的表面电阻、厚度方向上的电阻、交流信号下的交流阻抗,以及电化学阻抗谱.结果表明,两种聚合方法制备的试样在表面电阻、厚度方向上的电阻及交流阻抗等电性能方面,不存在显著差异,然而试样的电化学阻抗谱之间存在不同的性能特征,电化学聚合制备的导电织物和人造汗液之间所形成的双电层电容大于化学聚合制备的试样,且前者在人造汗液中的转移电阻明显小于后者.试样表面的微观形貌观察结果表明,电化学聚合的聚吡咯不仅覆盖了棉纤维的表面,而且有向空间生长聚集的现象,导致聚吡咯比表面积增加.  相似文献   

7.
采用恒电流法在聚吡咯(PPy)和聚苯胺(Pani)的相应单体溶液中制备了PPy和Pani的复合型导电高分子膜电极. 根据循环伏安曲线、充放电曲线和电化学阻抗谱,研究了超级电容器的电容性能. 结果表明, 聚合顺序对复合型导电高分子膜电极的电容性能有很大影响, 以PPy为底层的复合型电极的电容性能远高于其他复合型电极或单层膜电极. 不锈钢/PPy/Pani和不锈钢/PPy/Pani/PPy电极的比电容分别高达196.08 F/g和212.53 F/g.  相似文献   

8.
研究在0.1 mol/L硼砂溶液中pH对黄铜循环伏安行为及吡咯在黄铜电极表面电聚合的影响.采用扫描电子显微镜(SEM)和傅立叶变换红外线光谱(FT-IR)对聚吡咯(PPy)膜进行表征.结果表明,较高或较低的pH均使黄铜电极初始活性溶解的电位下降,在pH为9、10、11、12时,黄铜电极初始溶解电位增大至0.9 V左右,表面可生成一层钝化膜.在此条件下吡咯可以在黄铜电极表面发生电聚合,形成致密的聚吡咯膜.SEM显示电聚合后黄铜表面形成一层平整致密的薄膜.FT-IR证实了吡咯在黄铜表面的电聚合,并且硼酸盐掺杂进入PPy膜中.  相似文献   

9.
溶剂和酸处理对聚吡咯膜电性能的影响   总被引:2,自引:0,他引:2  
在大气氛围中,采用电化学沉积的方法在钽电极表面合导电聚吡咯膜,实验发现,机械拓磨促进了电极表面缺陷位置的增加,有利于聚吡咯膜的形成,从对支撑电 液老化机理的探讨出发,讨论了溶剂组分对聚吡咯膜电气性能的影响,由于吡咯单位的质子化作用是导致支撑电解液老化的根本原因,因此采用亲核性强的1,2-丙二醇碳酸酯(PC)和亲核性稍弱的乙腈(AN)混合溶剂配制支撑电解液,既可以合成出具有较高电导率的吡咯膜,又可以  相似文献   

10.
导电聚吡咯具有合成方便、电导率可调、易聚合等优点,而且具有特殊的光、电、热等性能,在导电聚合物中最具应用潜力。聚吡咯纳米复合材料是近年来出现的一种新型纳米材料,它既保留了聚吡咯的原有特性,还赋予了与之复合的材料的性能,成为许多前沿科研领域的重要研究方向。本文介绍了聚吡咯纳米复合材料的最新研究进展,综述了复合材料的主要类别及应用领域,并对聚吡咯复合材料的发展前景进行了展望。  相似文献   

11.
采用电化学方法制备了钽电解电容器阳极.通过场发射扫描电镜和理论分析对钽阳极断面的曲面结构特征及其形成机理进行了研究.研究结果发现Ta/Ta_2O_5的薄膜曲界面存在间隙层(1nm),该间隙层为氧空位及其缺陷离子迁移所致;曲面结构的应力模型表明曲面薄膜界面的电化学生长过程生产缺陷浓度高于平面系统,讨论了钽电解电容器曲面薄膜的形成过程对电场应力畸变屏蔽的机理.  相似文献   

12.
电磁波干扰越来越多地存在于我们的日常生活中,许多微电子封装材料需要具备屏蔽电磁波的功能.聚吡咯由于具有良好的导电性能和环境稳定性,表现出优异的电磁屏蔽能力.我们利用化学聚合法在绝缘环氧模塑料封装材料表面制备得到了导电聚吡咯薄膜,用X射线光电子能谱、红外光谱、扫描电子显微镜对聚合物薄膜进行了表征.通过SEM分析表明,经对甲基苯磺酸钠掺杂后,制备得到的聚吡咯薄膜均匀连续、致密平整,用四探针测试仪测得掺杂后聚吡咯薄膜的电导率达到了2.3×103S/m以上.  相似文献   

13.
The chlorinated polypropylene-polypyrrole composite film was synthesized by means of a newmethod for the first time. The effects of various conditions on polymerization and the electric con-ductivity of PPCl-PPy composite film were investigated. It was found that PPCl-FeCl_3 mixturehad an excellent film-forming ability and PPCl-PPy composite film could attain high conductivityat low content of polypyrrole and was stable for heat and atmosphere.  相似文献   

14.
对化学氧化法制备导电聚合物聚吡咯的最优制备条件进行了摸索,通过万用表测试聚吡咯产物的电阻值,得到聚吡咯材料的导电性能.结果表明,表面活性剂的种类、氧化剂种类、聚合反应时间、聚合反应温度等对所制备的聚吡咯材料的导电性能有较大的影响.研究表明制备聚吡咯导电聚合物的最优条件是:使用苯磺酸钠为表面活性剂、Fe Cl_3为氧化剂、吡咯单体与表面活性剂的物质的量比为3∶1、吡咯单体与Fe Cl3的物质的量比为1∶3,在冰水浴的实验条件(约为3~5℃)下,聚合反应12 h.  相似文献   

15.
1 Results Despite rapid progress in the development of resistive-type humidity sensors, the detection of low humidity is still a problem[1, 2]. In this study, poly(4-vinylpyridine) was crosslinked and quaternized with 1,4-bromobutane to form a polyelectrolyte humidity sensitive film on interdigitated gold electrodes, which was further coated with a layer of polypyrrole by a facile method of vapor phase polymerization process. The composite so prepared was characterized by UV-vis spectroscopy and scannin...  相似文献   

16.
采用电脉冲技术,以硝酸结的二甲基甲酰胺溶液为电解液,在铂电极上得到质地均匀,附着良好且有相当厚度的聚乙炔(PA)膜.不发生近期有关文献所报导的生成的PA以粉末状沉淀于电解液中的现象;电极表面状态,溶液的浓度、温度,脉冲电流的波形、强度,以及溶液中通入乙炔的量对聚合过程有重大影响;红外光谱和原子吸收光谱、电导率的测量以及循环伏安(CV)曲线皆证明在铂电极上的聚合物是Co~(2+)离子掺杂的PA.本文还从聚合方法的特点提出了一个直接估算电导率的公式.按此式计算的结果与实测值相吻合.  相似文献   

17.
Manganese dioxide (MnO2) was prepared using the ultrasonic method. Its electrochemical performance was evaluated as the cathode material for a high voltage hybrid capacitor. And the specific capacitance of the MnO2 electrode reached 240 F·g-1. The new hybrid capacitor was constructed, combining A1/Al2O3 as the anode and MnO2 as the cathode with electrolyte for the aluminum electrolytic capacitor to solve the problem of low working voltage of a supercapacitor unit. The results showed that the hybrid capacitor had a high energy density and the ability of quick charging and discharging according to the electrochemical performance test. The capacitance was 84.4 μF, and the volume and mass energy densities were greatly improved compared to those of the traditional aluminum electrolytic capacitor of 47 μF. The analysis of electrochemical impedance spectroscopy (EIS) showed that the hybrid capacitor had good impedance characteristics.  相似文献   

18.
简述了铝电解电容器的国内外发展现状,评述了近年来铝电解电容器用高介电常数复合阳极氧化膜及工作电解液的研究进展,指出了相关的技术难点和存在问题,探讨了高比容铝电解电容器的未来技术发展趋势。  相似文献   

19.
混合型电容器研究进展   总被引:1,自引:0,他引:1  
混合型电容器是一种介于超级电容器和二次电池之间的新型储能装置,是现代电子、交通等行业理想的动力电源.根据电极组合的不同,将混合型电容器分为以下三种类型,它们分别是双电层电容器电极与法拉第电容器电极的组合、传统二次电池电极与双电层电容器电极的组合以及电解电容器的阴极与超级电容器电极的组合.混合型电容器与传统超级电容器相比,在能量密度和工作电压上均得到了较大的提高.着重介绍几种性能优异的混合型电容器及其未来的发展趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号