首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 877 毫秒
1.
在多年冻土区修建铁路站场路基,打破了原来天然地表与外界的热力平衡,地下温度场将重新分布.根据此特征可推断多年冻土的发展演化趋势以及评定路基的稳定状况.结合青藏铁路某段站场路基实际监测数据,利用ANSYS软件对2002年~2030年地下温度场进行有限元数值模拟.模拟计算结果表明:路基下冻土上限发生上移,多年冻土得到了保护;在年平均气温增长0.02 ℃的条件下,试验段内冻土人为上限和未受路基影响的冻土天然上限均逐年下降;同时,路基阳坡、阴坡两侧地下温度场分布特征的差异构成了路基不均匀变形和路面裂缝的潜在威胁.  相似文献   

2.
 基于过渡段相变三维传热分析模型,对未来30 年路桥过渡段温度场进行分析与预测,研究了过渡段阴阳坡时空效应对路桥过渡段长期热稳定性的影响。计算结果表明:随着路桥过渡段运营时间的增长,各纵断面最大融化深度部位逐渐由过渡段转移到台背后路基,各横断面最大融深及最大融化速率位置均由阳坡坡脚转移到路基中心与阳坡路肩之间,相同运营时间,沿台背方向阴坡坡脚冻土上限变化并不明显;随着运营时间的增长,各横断面阳坡坡脚融化速率均大于天然冻土地基融化速率;各横断面除阳坡坡脚的其余部位在运营25 年以前,人为上限退化率基本小于天然冻土上限,运营25 年后,人为上限退化率逐渐大于天然冻土上限。  相似文献   

3.
基于热棒的工作原理,结合唐古拉山冻土区的道砟填土路基,考虑热棒材料本身的高导热性、阴阳坡、冻土相变等因素,采用有限单元法计算分析热棒对填土路基的降温效果。研究结果表明:第1年热棒运行结束后在路基阳坡下方形成直径大约为8.6 m、温度低于-0.5℃的低温区;右坡脚(阴坡)下形成直径大约为9.6 m、温度低于-0.5℃的低温区,并在低温区内热棒周围形成了温度低于-3℃的条形低温核;第3年路基下方靠近阴坡位置形成温度低于-0.8℃的低温区,热棒起到了很好的制冷效果,保证路基下伏冻土不融化,从而保证路基的稳定性。  相似文献   

4.
青藏铁路低温冻土区片石路基的温度特征   总被引:1,自引:0,他引:1  
在青藏铁路五道梁低温冻土区进行了片石护道路基新结构和土护道路基结构的实体工程试验,以确定路基修筑对温度场的影响.对测试断面冻融循环的地温监测资料的分析表明,2004年片石路基左右路肩孔冻土上限处,年平均地温分别低于土护道路基相应位置0.12℃和0.14℃,2005年片石路基左右路肩孔分别低于土护道路基相应位置0.65℃和0.03℃,冻土上限以下地温均呈逐年下降趋势.片石护道和土护道路基冻土上限均存在不对称性,但随着时间发展,片石护道路基最大融化深度位置基本接近或超过天然地面,且冷生过程还在继续.该区域的片石护道路基新结构能够有效发挥降低地温、主动保护多年冻土的作用.  相似文献   

5.
青藏高原多年冻土区路基温度场数值模拟   总被引:5,自引:0,他引:5  
根据青藏公路沿线近30年的气象资料,考虑太阳辐射、气温、风速、风向、蒸发等第二类、第三类边界条件,结合路线走向、路基高度、路面类型状况,对青藏公路五道梁地区路基温度场进行有限元分析。经验证,计算结果与路基温度场实测资料基本一致。有限元分析表明,在年周期内路基边界处的温度仍然可按正弦曲线较好地加以拟合;路线走向对冻土路基温度场的对称性有着重要影响,东西走向路基阴阳坡效应最为显著,南北走向路基的温度场基本对称;当路基存在坡向差异时,其阴阳坡效应的强弱与季节密切相关,夏季较弱,冬季较强。  相似文献   

6.
对地处黄土高原丘陵沟壑区的刘渠村东山西南坡和东北坡8个地点的气温,间隔10 min进行了连续观测。结果表明,年平均温度随着海拔高度的升高呈先升后降的趋势,山谷低,山坡中央最高,山顶略低于山坡。平均最高气温阳坡直减率为1.2℃/100 m,阴坡直减率为0.43℃/100m。坡向对平均最高气温影响明显,阴坡与阳坡平均相差1.9℃。山地逆温影响显著,平均最低气温随海拔呈升高趋势,阴阳坡之间差异较小,上升值为1.35℃/100 m,最低气温主要受地形影响,与坡向无关系。阳坡山谷日较差最大,随海拔升高呈递减趋势,山谷与山顶的年平均日较差差值达到5.6℃;阴坡日较差是山体的最小值。日平均温度稳定通过0℃、5℃、10℃的初终日和积温基本无差别;山谷初霜早,终霜迟,山体上部初霜迟,终霜早,山体上部及山顶无霜期比山谷多45 d,山体中部比山谷约多20 d。  相似文献   

7.
青藏铁路清水河段多年冻土区站场路基的试验研究   总被引:2,自引:0,他引:2  
通过对青藏铁路清水河段站场路基的初步试验,获取了地温变形数据,探讨站场路基的冻结和融化过程的规律.实验表明:站场路基下冻土人为上限发生了上移,多年冻土得到了保护,为类似路段多年冻土工程提供借鉴.  相似文献   

8.
青藏公路多年冻土路基内的热状况   总被引:7,自引:1,他引:7  
基于青藏公路沿线2组地温观测孔5年的地温观测资料,定量分析了高温冻土区和低温冻土区路基内的热状况.结果表明:路基近地表地温明显高于对应天然地表下的地温,路基近地表经历的融化期长于对应天然地表,高温冻土区路基内已形成贯穿融化夹层;进入路基内活动层的热收支呈明显热积累状态;进入高温冻土区路基下伏多年冻土内的热收支处于持续不断的吸热状态,进入低温多年冻土区的热收支也呈现出吸热明显大于放热的周期性变化;高温冻土区接近0℃的地温及其持续不断的热积累是引起下伏多年冻土不断融化的主要原因,低温冻土区进入多年冻土的热积累暂时以增高地温耗热为主,随着地温的增高,低温冻土区也可能发生强烈的冻土融化.  相似文献   

9.
青藏铁路保温板热棒复合结构路基保护冻土效果数值分析   总被引:2,自引:0,他引:2  
根据带相变热传导有限元方法,对普通路基、含保温板路基、热棒路基和保温板热棒复合结构路基在未来50年青藏铁路沿线气温上升2.0℃情况下的温度场进行了预报分析和比较.计算结果表明,在年平均气温为-3.5℃或地表年平均温度为-1℃的地区,在青藏铁路50年的使用期内,普通路基、含保温板路基和热棒路基在气温升高条件下路基下伏、冻土都将发生融化,路基将会产生较大融沉变形,不能保证青藏铁路路基的稳定性.而保温板热棒复式结构充分利用了保温板和热棒两种措施的优点,可以更好的提高保护冻土的效率.  相似文献   

10.
为揭示气候温升背景下青藏工程走廊带多年冻土热融蚀敏感性分布规律,基于现有地温分布、活动层厚度的野外监测数据建立了二者与热融蚀敏感性之间的多元回归模型,并采用开放系统地气耦合模型对2016年以后气候温升模式下多年冻土年平均地温和活动层厚度变化进行数值研究,进而获得未来20 a和50 a青藏工程走廊带多年冻土热融蚀敏感性分布预测图.研究结果表明,走廊带内冻土年平均地温越低,受气候温升的影响越大,而活动层厚度则随地温和气温的升高而增大,年平均气温-5.5℃工况下,其年平均地温和活动层厚度增幅分别为0.015 4℃/a和0.86 cm/a;融区和高温冻土区主要分布在走廊带沿线的河流、谷地和盆地等区域,且随着气温的逐年增加,预计2066年低温冻土区域比例将减少52.1%,高温冻土区域和融区面积比例总计将增加74.7%;走廊带内多年冻土的热融蚀敏感性将大幅增加,且极敏感型冻土的增加比例将随时间而加速增长,到那时极敏感型冻土比例将增长1倍以上,敏感型和极敏感型冻土将占整个走廊带内多年冻土区的78%以上.  相似文献   

11.
根据青藏高原不同年平均地温区域多年冻土的长期监测资料及附面层理论,分别建立整体式和分离式路基计算模型,分析气候变暖和工程活动作用下多年冻土的变化过程。考虑采用分离式路基来弱化宽幅整体式路基所引起的"聚热效应",分析不同年平均地温和隔离带宽度下分离式路基对多年冻土的影响。研究结果表明:与窄幅路基相比,宽幅路基具有强烈的吸热特性,导致下部多年冻土退化严重。在路基修筑后第50年,年平均地温为-0.5,-1.0,-1.5和-2.0℃区域的宽幅路基中心下部多年冻土上限比窄幅路基的分别低2.73,3.66,3.67和2.60 m,宽幅路基下部6 m深度多年冻土地温比窄幅路基的分别高0.61,0.87,0.82和0.48℃;两幅分离式路基之间存在相互热干扰作用,使得路基两侧土体温度场呈现明显的不对称性;随着年平均地温的降低和隔离带宽度的增加,路基两侧土体温度场的不对称性逐渐减弱,即两幅路基之间的相互热干扰作用减小。因此,拟建青藏高速公路可使用分离式路基来代替整体式路基进行修筑,且年平均地温和隔离带宽度是分离式路基修筑所要考虑的重要因素。  相似文献   

12.
以青藏铁路五道梁片石路基为研究实例,分析了片石层的工作原理,并与一般路基不同位置处的地温进行了比较,认为片石路基有利于保护冻土地温.在考虑空气对流作用的前提下,对五道梁片石路基进行了地温预测,结果表明,在预测前30年还能有效地保护冻土,而50年后其人为上限出现下凹形态.  相似文献   

13.
为了研究多年冻土区高速公路热管路基的制冷效果及适用范围,建立热管路基水热计算模型,分析不同条件下的热管路基冻土人为上限深度和热稳定状态,并将路基高度、年平均气温、气温年较差3个因素形成组合进行热管的适用范围分析。研究结果表明:对于气温年较差为12℃的冻土区,高度为4 m的热管路基适用于年平均气温低于-5.5℃的区域,高度为3m的热管路基适用于年平均气温低于-5.8℃的区域;对于青藏高原大部分地区,在15 a的运营期限内,高速公路热管路基具有一定的局限性,其服役期限内不能保持路基稳定性;但对于风火山地区,采用高度为3 m的热管路基可以保证工程稳定性。  相似文献   

14.
薛兆锋 《科技信息》2012,(34):I0210-I0211
本文初步分析、对比了214国道多年冻土段几种地温调控措施的工作效果,结果发现遮阳板护坡、碎石护坡的效果较好,能够有效降低冻土温度、提升冻土上限;保温路基通过大幅度减小保温板下的土体温度年较差也可以提高冻土上限减缝冻土退化速率;纵向通风措施也可以有效降低通风管周围的土体温度;硅藻土护坡措施降温效果偏差、综合对比各种措施的降温效果,本文推荐遮阳板护坡和碎石护坡作为该地区地温调控措施的首选,其次是保温路基和纵向通风管措施,最后是硅藻土护坡。  相似文献   

15.
为了研究不同地貌部位(峁坡、沟坡、峁顶)和不同坡向(阴坡、阳坡、半阴坡、半阳坡)对土壤有机碳分布的影响,以陕北黄土高原为研究对象,在考虑不同地貌部位和坡向的基础上,选取样点49个,按0~10 cm,10~20 cm,20~30 cm,30~40 cm分层采集样品.结果表明,土壤有机碳的均值为13.2 g/kg;不同地貌部位土壤有机碳分布主要受降雨径流以及植物根系的影响;不同坡向土壤有机碳含量均值的大小顺序为:阴坡>半阴坡>半阳坡>阳坡;相同地貌部位,阳坡,阴坡、半阴坡、半阳坡均发生向下的淋溶迁移;相同坡向,峁坡和沟坡土壤有机碳剖面分布基本一致.  相似文献   

16.
在全球气候转暖,特别是在沥青面层铺筑的影响下,青藏公路路基下多年冻土与原始状态相比有了很大的变化,除个别路段外大部分退化显著,沿线多年冻土的分布和状态已十分复杂,其分布和冻土年均地温、冻土上限深度等性质具有明显分段性.研究其分布和性质的演变规律与现状,对青藏公路多年冻土病害整治和青藏铁路建设具有重要意义.  相似文献   

17.
王进昌  孙志忠  武贵龙 《甘肃科技》2015,31(1):80-82,101
路基变形是路基稳定性的外在表现形式。基于青藏铁路多年冻土区路基变形与温度监测资料,分析了铁路路基变形总体特征,并探讨了路基变形的来源。该研究为青藏铁路路基稳定性判断及病害预警提供数据支持,为铁路工程的维修养护提供依据,也为变形理论分析提供必要的科学依据。研究结果表明:青藏铁路自通车运营以来路基变形总体上趋于平稳,仅有2个断面的变形超出规范要求,但仍有部分监测断面的沉降变形处于发展之中。(部分路基断面不均匀变形明显,表现为路肩纵向变形和路基横向变形差异较大。路基变形较大的断面,其变形主要来自路基下部因多年冻土人为上限下降而引起的高含冰量冻土的融沉变形、融土的压密变形以及下部多年冻土的压缩变形。路基变形较小的断面,其变形主要来自路基下部多年冻土与残余冻土的压缩变形。)  相似文献   

18.
青藏铁路典型地段变形特征分析   总被引:1,自引:0,他引:1  
冻土区路基变形问题的核心就是研究路基内地温的变化.通过分析青藏铁路典型地段气温地温均低、气温高地温低、气温地温均高3种不同地段在工程热扰动阶段、路基趋于稳定阶段、铁路长期运营阶段的地温变形原始资料,得到相应地段在不同时期的地温和变形特征.分析结果表明,气温、地温均高地段路基抵御未来气温升高的能量积累不足,产生的沉降变形量最大,因此必须采用相应的工程措施.  相似文献   

19.
运营期青藏铁路冻土区路基工程最值得关注的变化是不同部位裂缝的发生和发展以及对线路安全运行的影响.通过对不同时期青藏铁路多年冻土区路基工程裂缝发生发展影响因素的分析,认为冻土区路基工程基底地温场的不对称以及基底土体冻融过程不同步是路基工程变形裂缝发生的主要原因,路基坡脚和周围冻土水热环境变化是裂缝发展的拉动力,路基填料性质也是不容忽略的因素;根据运营期间冻土路基热状态和工程状态分析,对运营期青藏铁路冻土路基工程状态进行了初步评价,并提出了减少或消除地温场的不对称及保护路基坡脚冻土环境,从而抑制冻土路基裂缝的工程对策.  相似文献   

20.
在多年冻土区修建铁路,打破了原来天然地表与外界的热力平衡,从而导致地下温度场重新分布.通过对青藏铁路安多试验段实测数据分析,本文论讨了在冻土沼泽化湿地分别采用抛填片石和土工格栅地基处理措施以后的路基地温特性,以及冻土上限的变化趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号