首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
有界变参数车道保持准滑模控制   总被引:1,自引:1,他引:0  
假定车辆质量、转动惯量、轮胎侧偏刚度等参数具有不确定性,考虑时变有界和慢变未知两种情况,研究了自动化公路系统车道保持控制方法.基于位置预瞄策略和车辆横向动力学模型,建立预瞄点处的车辆横向位置误差和横摆角误差动态方程;采用准滑模控制方法,设计车道保持变结构控制规律;基于李雅普诺夫稳定性理论,对控制系统的稳定性进行分析.仿真实验表明,采用文中设计的控制方法,在达到满意跟踪性能的同时,还能有效抑制颤振,对参数不确定性具有鲁棒性.  相似文献   

2.
针对汽车的自动车道保持系统,研究了基于模型预测控制(MPC)的转向控制策略.对车辆的侧向动力学和轮胎的侧偏特性进行分析,研究了以位移偏差、横摆角偏差和两者微分项为状态变量、前轮转向角为控制输入的侧向动力学模型;在该模型的基础上,建立了车道自动保持控制的优化性能指标和系统约束,引入了平滑的期望参考轨迹,设计了基于MPC的转向控制策略.仿真试验证明,在不同车速下,该控制策略均能迅速消除侧向位移偏差和横摆角偏差,保证车辆沿着车道中心线行驶,并有效平滑系统的动态响应,具有较好的适应性和鲁棒性.  相似文献   

3.
针对线控四轮主动转向车辆受侧向干扰和变道行驶时存在的操纵稳定性问题,基于单点预瞄驾驶员模型、三自由度整车动力学模型和改进型滑模四轮转向(4WS)控制算法,建立了4WS整车驾驶系统,并设计了双移线行驶工况对其进行实验测试.在Matlab/Simulink软件中对该整车驾驶系统进行建模仿真,并与相同参数的经典型滑模控制的4WS车辆和无控制前轮转向(FWS)车辆模型仿真结果对比.结果表明:设计的改进型滑模控制器可以有效地实现双移线行驶工况,追踪理想横摆角速度,使质心侧偏角、车身侧倾角和侧倾角速度保持一个相对较小的值,并且对侧向干扰具有很强的鲁棒性.   相似文献   

4.
建立车辆侧向动力学模块、车辆传感模块、道路曲率预瞄模块.在传统模型预测控制(MPC)算法的基础上,利用辛普森法则,结合车道保持优化性能指标和系统约束,设计基于自适应模型预测控制的车道保持控制策略.在Simulink环境下,将其与基于传统模型预测控制器进行比较分析.仿真结果表明:相较于模型预测控制,自适应MPC能够在各控制周期实现车辆模型更新,在强非线性工况下具备较好的鲁棒性,进而能够保证行车安全的前提下,获取较好的乘坐舒适性.  相似文献   

5.
 针对高速工况下四轮独立驱/制动电动车的车道偏离问题,提出一种基于主动转矩分配的车道保持辅助控制方法。该方法的辅助控制系统分为3层,顶层控制器根据人-车-路信息实时进行辅助控制决策,并计算车道保持所需的横摆响应;中层控制器基于滑模控制算法,计算横摆响应跟踪所需的附加横摆力矩;底层控制器通过主动转矩分配产生附加横摆力矩,干预车辆行驶轨迹,以达到车道保持的目的。采用CarSim/Simulink联合仿真进行高速单移线实验验证,结果表明,提出的基于主动转矩分配的四轮独立驱/制动电动车车道保持辅助控制方法,具有良好的车辆动力学稳定性,在高附路面和低附路面上均能够有效地干预车辆行驶轨迹,防止车辆偏离车道。  相似文献   

6.
为了研究驾驶员预瞄时间与公路弯道半径耦合特征对汽车操纵稳定性的影响,建立了人-车-路系统动力学模型,通过基于实际道路数据的仿真试验,分析了驾驶员预瞄时间和弯道半径对汽车动力学特征和路径跟踪情况的影响,验证了模型的正确性.利用相轨迹变化、轮胎侧向力、汽车行驶轨迹偏差、车身姿态变化、汽车状态变量(纵向速度、侧向速度、横摆角...  相似文献   

7.
为提高电动汽车的空间稳定性,开展基于轮毂电机和主动悬架的整车横摆-侧倾运动联合控制.分析了轮毂电机差动驱动联合主动悬架控制对车身横摆-侧倾运动的影响,制定了空间稳定性协同控制策略.以横摆角速度和质心侧偏角为状态变量,设计了基于参考模型的横摆稳定性控制器;以方向盘转角和侧向加速度为状态变量,设计了基于主动悬架侧倾抑制的前馈控制器;以侧倾角速度和侧倾角为状态变量,设计了基于反馈最优控制的侧倾稳定性控制器.建立了四轮驱动转矩和主动悬架力/力矩协调分配规则,通过联合仿真验证了控制策略的有效性.研究表明,轮毂电机差动驱动具有横摆稳定性控制能力和一定的侧倾辅助控制效果,联合主动悬架控制可以改善车辆的横摆-侧倾运动状态,大幅提高整车的空间稳定性.  相似文献   

8.
为使分布式驱动电动汽车在不同工况下能够保持直线行驶,摒弃传统的单一控制变量和单一控制模式的方法. 基于CarSim和Matlab/Simulink联合仿真平台,针对车辆在不同工况下的受力特点和不同控制方法的控制特点,提出双模式控制策略. 即在车辆行驶速度较低且侧向风速度较小时,采用带有加权比重的侧向位移和横摆角联合控制的终端滑模变结构控制模式;在车速较高且侧向风速度较大时,利用模糊控制对无法建立精确数学模型的系统具有很好控制效果的特点,对横摆角采用模糊控制模式. 研究结果表明,车辆在低速行驶和高速行驶,有侧向风和无侧向风的情况下,均能很好地维持直线行驶. 该控制策略比传统的单变量侧向位移终端滑模控制和单变量横摆角终端滑模控制的效果都要好,精度更高,大大地提高了车辆的行驶安全性.  相似文献   

9.
提出了一种无压力闭环的差动制动实现车道偏离辅助的控制方法.根据车辆和驾驶员参考模型确定纠正车道偏离所需的目标横摆角速度.采用滑模算法设计横摆角速度跟踪控制器,确定附加横摆力矩.基于纵向滑移率均衡设计车轮制动压力调节策略,限制车轮最大滑移率,以提高车辆横向稳定性.设计模糊控制器对压力建立过程进行伺服控制.在Carsim/Labview-RT联合仿真平台上对提出的方法进行硬件在环仿真试验,试验结果表明,所提出方法能有效避免车辆偏离车道,鲁棒性强,且车辆横向稳定性好.  相似文献   

10.
智能车辆轨迹跟踪的准确性与鲁棒性是车辆运动控制性能的重要表征,基于路径预瞄信息的跟踪控制研究使车辆性能显著提升. 然而,车辆转向系统响应不足给车辆实时准确的基于预瞄信息跟踪参考轨迹带来挑战. 针对此问题,实时引入转向系统状态建立双闭环轨迹跟踪控制结构,保证智能车辆轨迹跟踪控制算法对转向系统响应不足的鲁棒性. 具体结构外环基于预瞄信息使用模型预测控制求解最优转向角,内环基于转向状态误差使用PID方法设计反馈控制律以补偿转向响应不足. 双闭环结构耦合控制输入保证了车辆鲁棒最优跟踪控制. 最后通过Carsim与Simulink联合仿真,验证了该双闭环控制结构的有效性.   相似文献   

11.
目的 针对线控四轮转向汽车横向稳定性不足及控制鲁棒性差等问题,提出一种主动转向反馈控制策略。方法 使用Simulink搭建线控转向系统转向执行机构动力学模型,将MATLAB/Simulink与Carsim联合仿真,建立线控四轮转向整车模型;基于二自由度模型分析横摆角速度和质心侧偏角对汽车稳定性的影响,推导理想的横摆角速度和质心侧偏角;以横摆角速度增益恒定为依据设计理想传动比,得到期望前轮转角,以横摆角速度误差为控制量设计模糊控制器得到附加前轮转角对期望转角实时修正,实现前轮主动转向;针对横摆角速度和质心侧偏角与理想值之间的误差,加权得到稳定性控制目标;设计自适应积分滑模反馈控制策略输出后轮转角,对理想值进行跟踪,实现后轮主动转向。结果 仿真实验结果表明:所搭建的线控转向系统能够准确反映汽车动力学特性。相比无控制的机械前轮转向汽车与横摆反馈控制的四轮转向汽车,线控主动四轮转向汽车在双移线工况下将质心侧偏角控制在0值附近波动,横摆角速度跟踪误差控制在1.149 deg/s以内;在角阶跃工况下将质心侧偏角稳态值控制在0.065 deg,横摆角速度稳态值误差为0.074 deg/s。结论 线控...  相似文献   

12.
基于滑模控制理论的车辆横向稳定性控制   总被引:1,自引:0,他引:1  
针对车辆在极限运动工况下转弯或变道行驶时的横向稳定性控制问题,建立以车辆横向速度、横摆角速度及车身侧倾角为状态变量的3自由度非线性动力学模型.在动力学分析的基础上,探讨依靠施加各车轮不同纵向制动力而产生辅助横摆力矩的方法来提高车辆在极限工况下的操纵稳定性.考虑到作为车辆状态变量之一的质心侧偏角难以测量,设计了基于车辆动力学模型及运动学关系相结合的质心侧偏角估计器.运用滑模控制理论,以车辆横摆角速度和质心侧偏角与相应的理想横摆角速度和质心侧偏角之差,作为车辆稳定性控制系统的两类控制输入变量,以车轮纵向制动力矩和方向盘转角为控制目标建立了联合滑模控制系统,通过计算机仿真表明,该控制方法可以有效改善车辆横向稳定性.  相似文献   

13.
针对四轮独立转向电动汽车转向系统成本高、但功能开发程度低的问题,提出一种车辆斜向行驶控制策略,优化四轮独立转向电动汽车换道过程中的行驶稳定性. 基于四轮独立转向电动汽车横向、纵向二自由度车辆模型,提出一种横纵向耦合轨迹跟踪控制方法,该方法基于线性时变模型采用模型预测控制(MPC)算法,对横向偏差、航向角偏差及纵向速度偏差进行闭环控制. 设计车辆稳定性控制器,包括横摆力矩控制器和转矩分配控制器,同时提高车辆轨迹跟踪精度和行驶稳定性. 最后搭建Simulink/Carsim/Prescan联合仿真平台,对四轮独立转向电动汽车双移线工况进行模拟换道仿真,仿真结果证明了斜向变道的可行性和横纵向耦合轨迹跟踪控制方法的有效性.   相似文献   

14.
车辆横向稳定性的模糊控制仿真   总被引:1,自引:0,他引:1  
车辆横向稳定性一般是由车辆的结构来保证的,但车辆在较大侧向力作用下将丧失横向稳定性.通过建立车辆转向运动的简化模型,利用前馈补偿和模糊控制策略,将前轮转向角视为前馈输入变量来补偿转向角引起的车辆侧偏角变化;通过左右车轮制动力差产生附加力矩来控制车辆的横摆运动,同时以车辆横摆角速度为反馈输入变量来校正消除系统误差,设计了车辆模糊控制器,并对控制系统在不同车速下进行了仿真分析.仿真结果表明,施加控制的车辆与无控制的相比,横摆角速度与侧偏角的输出稳态值减小,超调量降低,改善了车辆的横向稳定性.特别在高速情况下,车辆横向稳定性改善更加明显.  相似文献   

15.
针对汽车主动前轮转向子系统和直接横摆力矩控制子系统的集成控制问题,基于快速终端滑模控制理论设计一种标定参数少和动态响应速度快的鲁棒集成控制器.首先,基于达朗贝尔原理建立包含车身侧向和横摆运动自由度的汽车动力学模型作为底盘集成控制模型.随后,基于快速终端滑模控制理论分别设计主动前轮转向控制律和直接横摆力矩控制律,并且通过汽车质心侧偏角相平面定义的平滑切换因子建立二者的切换规则,实现主动前轮转向子系统和直接横摆力矩控制子系统的平滑切换控制,并且将主动前轮转向子系统和直接横摆力矩控制子系统的主要工作区域分别控制在轮胎的线性区域和非线性区域.最后,结合车辆动力学仿真软件对所提出的鲁棒集成控制器的可行性和有效性进行验证,结果表明:所提出的底盘集成控制器可以同时兼顾汽车操纵稳定性和乘坐舒适性.  相似文献   

16.
基于Simulink的四轮转向汽车神经网络控制策略仿真   总被引:1,自引:0,他引:1  
针对汽车小转角时质心侧偏角为零,高速大转角时前轴抗侧滑的控制目标,提出一种四轮转向汽车控制策略.在Simulink环境下建立包含轮胎非线性和计及侧倾的三自由度四轮转向汽车模型,运用双隐含层BP神经网络训练得到四轮转向控制器.仿真结果表明,神经网络控制器可有效控制高速时汽车前轴滑动的趋势,并在低速到高速时使汽车质心侧偏角基本为零,控制误差低于比例转角控制策略和横摆角速度反馈控制策略.同时高速时横摆角速度响应与前轮转向汽车接近,汽车的侧向加速度和车身侧倾角稳态值比前轮转向有所降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号