首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Japan started the national project “COURSE 50” for CO2 reduction in the 2000s. This project aimed to establish novel technologies to reduce CO2 emissions with partially utilization of hydrogen in blast furnace-based ironmaking by 30% by around 2030 and use it for practical applications by 2050. The idea is that instead of coke, hydrogen is used as the reducing agent, leading to lower fossil fuel consumption in the process. It has been reported that the reduction behavior of hematite, magnetite, calcium ferrite, and slag in the sinter is different, and it is also considerably influenced by the sinter morphology. This study aimed to investigate the reduction behavior of sinters in hydrogen enriched blast furnace with different mineral morphologies in CO–CO2–H2 mixed gas. As an experimental sample, two sinter samples with significantly different hematite and magnetite ratios were prepared to compare their reduction behaviors. The reduction of wustite to iron was carried out at 1000, 900, and 800°C in a CO–CO2–H2 atmosphere for the mineral morphology-controlled sinter, and the following findings were obtained. The reduction rate of smaller amount of FeO led to faster increase of the reduction rate curve at the initial stage of reduction. Macro-observations of reduced samples showed that the reaction proceeded from the outer periphery of the sample toward the inside, and a reaction interface was observed where reduced iron and wustite coexisted. Micro-observations revealed three layers, namely, wustite single phase in the center zone of the sample, iron single phase in the outer periphery zone of the sample, and iron oxide-derived wustite FeO and iron, or calcium ferrite-derived wustite 'FeO' and iron in the reaction interface zone. A two-interface unreacted core model was successfully applied for the kinetic analysis of the reduction reaction, and obtained temperature dependent expressions of the chemical reaction coefficients from each mineral phases.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

3.
《矿物冶金与材料学报》2021,28(12):1940-1948
The evolution of inclusions and the formation of acicular ferrite (AF) in Ca–Ti treated steel was systematically investigated after Mg and La addition. The inclusions in the molten steel were Ca–Al–O, Ca–Al–Mg–O, and La–Mg–Ca–Al–O after Ca, Mg, and La addition, respectively. The type of oxide inclusion in the final quenched samples was the same as that in the molten steel. However, unlike those in molten steel, the inclusions were Ca–Al–Ti–O + MnS, Ca–Mg–Al–Ti–O + MnS, and La–Ca–Mg–Al–Ti–O + MnS in Mg-free, Mg-containing, and La-containing samples, respectively. The inclusions distributed dispersedly in the La-containing sample. In addition, the average size of the inclusions in the La-containing sample was the smallest, while the number density of inclusions was the highest. The size of effective inclusions (nucleus of AF formation) was mainly in the range of 1–3 μm. In addition, the content of ferrite side plates (FSP) decreased, while the percentage of AF increased by 16.2% due to the increase in the number of effective inclusions in the La-containing sample in this study.  相似文献   

4.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

5.
6.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

7.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

8.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

9.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

10.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

11.
企业Intranet网络建设发展迅速,但建设过程中企业往往缺乏科学的总体规划.本文对建设企业Intranet网络提出了有参考价值的建设思路,供企业领导和技术人员参考.  相似文献   

12.
将移动化学反应界面的实验(引自J.Phys.Chem.1970,74:1122.Anal Chem190;42:321和J.Chromatogr.1993,683:179)与移动化学反应界面理论的预测作了对比性研究。结果表明:实验结果与理论的预测吻合.因此,实验验证了理论的有效性。  相似文献   

13.
运用计算机多媒体CAI课件进行课堂辅助教学,是提高教学质量的一种重要手段,本介绍了用VB制作《生物化学》课中“肽链的延长及终止阶段”CAI课件的方法及其应用,并指出CAI课件在教学过程中主要起教学辅助作用。  相似文献   

14.
对甲醇生产PC脱碳过程进行了模拟,研究了吸收塔出口气体CO2和CH4浓度随吸收塔入口气体压力之间的变化;吸收塔出塔气体浓度随入塔流量之间的变化;油田气组成变动时吸收塔出入口之间的组成关系;出塔组成与气液比之间的关系;压缩功以及建立了吸收子系统的简化模型;并获得了相应的结论.  相似文献   

15.
柳枝中药用成分的研究   总被引:1,自引:0,他引:1  
采用溶剂萃取和层析的方法,从柳枝中分离得到一组酚类葡萄糖苷,其中包括水杨苷等.气相色谱分析结果显示,样品中酚类葡萄糖苷的含量在45%~55%之间,实验表明,丙酮的萃取效果优于乙醇.  相似文献   

16.
分析了种子干燥过程中的劣变机理,构造了种子发芽率一阶动力预测模型,并对模型进行了验证。  相似文献   

17.
基于细观力学方法分析了智能复合材料中的微裂纹与夹杂的相互作用,导出了裂纹扩展的能量释放率,分析了形状记忆合金的多机理联合增韧作用.研究表明,智能复合材料具有相变和异性夹杂的双重增韧机理,而且其韧度可由外部条件控制,因而有可能使这种复合材料展示出超级力学性能  相似文献   

18.
提出一种小型通用型数据采集系统的结构,输入端子可接任何形式的信号,如模拟量、开关量和脉冲量,输出信号采用分时传送方式输出,适用于各种生产过程的参量采集。  相似文献   

19.
本文应用TEM技术、电镜细胞化学、胶体金标记和银染技术结合研究了大鼠骨髓细胞染色体现有架。超薄切片结合RNP优先染色法在染色体原位显示RNP,同时又结合银染电镜扭亏为盈主RNase-胶体金定位显示RNA,结果显示金颗粒与银颗粒在染色体中分布的位置与RNP所在部位恰好一致。说明RNP中的蛋白质含有角染的酸性蛋白,即所观察到的染色体骨架非组蛋白、RNP中的蛋白部分,银染蛋白三者是一致的。  相似文献   

20.
进行了由Co^2+和OH^-形成的“移动化学反应界面”的实验。实验中,观察了界面移动速度(μthe^αβ)对比。通过改变Co^2+和OH^-的浓度和反应管中电场强度等参数,总共完成了26次实验。统计分析表明:μobs^αβ和μthe^αβ的相关系数是0.997,μthe^αβ和μobs^αβ之间的线性回归方程是μthe^αβ=1.044μobs^αβ+0.136。结果显示:实验观察的界面移动速度(  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号