首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 856 毫秒
1.
北京大气细粒子PM2.5的化学组成   总被引:38,自引:0,他引:38  
为了解北京大气细粒子(PM2.5)的污染水平和污染特征,在车公庄和清华园进行了连续1年、每周1次同步采样和全样品分析。2个采样点PM2.5的化学组成相似。含碳组分和水溶性离子是主要的组分,其质量浓度之和超过PM2.5的50%。有机碳、元素碳和细粒子PM2.5的季节变化一致,即冬季质量浓度最高,夏季最低。夏季NO-3的质量浓度最低且在采样过程中从特氟隆滤膜上有近50%的挥发。SO2-4不同于PM2.5的季节变化主要取决于SO2的转化率。地壳元素的质量浓度从冬季到春季大幅度上升,春季沙尘天气频是一个重要原因。  相似文献   

2.
重庆主城区PM 2.5中金属元素组分特征分析   总被引:2,自引:0,他引:2  
利用Xact-625大气多金属在线监测仪监测重庆市2013年春季PM2.5中金属元素的含量,分析PM2.5及金属元素的浓度分布特征与时间变化规律;结果发现,春季PM2.5质量浓度变化范围为15.6~157.3 μg·m-3,15种金属元素平均总浓度为2 481 ng·m-3,占PM2.5总浓度的3.86%;典型日分析中,Zn、Pb的浓度从5点钟开始持续升高,在10点钟达到峰值;As浓度在1点钟出现最小值;富集因子法分析结果表明Zn、As、Se、Ag、Cd、Sn、Hg、Pb的富集因子较大,为人为污染.  相似文献   

3.
为分析长沙市PM2.5浓度时间变化特征、空间分布特征及其影响因子,利用数据统计分析、克里金空间插值技术、地理探测器等方法与Arc GIS平台表达,选取长沙市中心城区10个监测点2013—2019年PM2.5日变化数据.结果显示:在PM2.5浓度时间变化特征方面,不同季节中,PM2.5浓度表现出冬季>秋季>春季>夏季的季节特征,不同时段中,各季节PM2.5浓度日均小时变化曲线均大致呈双峰形态;在PM2.5浓度空间变化特征方面,PM2.5浓度的高值区主要分布在中部芙蓉区,整体呈城区向郊区逐渐递减的变化规律.根据地理探测器研究结果发现,2017年长沙主城区PM2.5浓度主要受气温、降雨和风速因子影响,其次是道路、相对湿度、气压和人口密度,高程、植被和餐饮因子影响较小;且任意两个影响因子共同作用均会对PM2.5浓度影响增强.  相似文献   

4.
在2015年徐州市7个地面观测站PM2.5质量浓度监测数据的基础上,结合MOD04_3K AOD产品和地面气象数据,构建了基于物理机理修正的近地面PM2.5多元回归反演模型。利用实测和遥感反演数据共同分析了徐州市PM2.5质量浓度时空变化特征。分析结果表明,在徐州中心城区PM2.5质量浓度的日变化特征表现为PM2.5浓度白天降低,夜间升高的趋势。春秋两季的峰值出现在8:00—9:00,夏季峰值出现在6:00—7:00之间,冬季峰值出现在10:00—11:00之间。PM2.5浓度的季节变化特征为冬季>春季>秋季>夏季。PM2.5浓度的空间分布格局为:徐州市区及铜山中心区、新沂市及新沂与邳州边界为PM2.5高浓度的主要区域,与徐州的城镇会格局相似。  相似文献   

5.
于2009年10月至2010年8月间采集郑州市大气颗粒物PM2.5与PM10样品,对其质量浓度及水溶性离子进行分析研究.结果表明:PM2.5在秋、冬、春、夏四季的质量浓度的平均值分别为134.9、121.6、77.9和102.0μg/m^3,PM10在秋、冬、春、夏四季的质量浓度的平均值分别为193.2、184.0、140.9和140.5μg/m^3,日均值超标率分别达77.8%和59%.PM2.5和PM10质量浓度呈现很好的相关性,春季粗粒子在PM10中的比例相对较高,而秋、冬和夏季细粒子是PM10的主要组成部分.主要的水溶性离子是SO4^2-、NO3^-和NH4^+,大部分以(NH4)2SO4和NH4NO3形式存在;NO3^-和SO4^2-质量比小于1,说明采样期间郑州市大气以固定排放源污染为主.  相似文献   

6.
长三角典型城市PM2.5浓度变化特征及与气象要素的关系   总被引:1,自引:1,他引:0  
利用长三角地区4个典型城市南京、上海、杭州、合肥2014年4月1日~2015年3月31日的PM2.5监测数据,以及同期MICAPS地面气象要素的观测资料,对该地区PM2.5浓度的变化规律及其与气象要素的关系进行了分析和讨论。结果表明:长三角地区PM2.5浓度总达标率总体表现为夏季最高,冬季最低的态势。4个城市中,上海全年总达标率最高,杭州其次,合肥最低。上海和杭州达标率月变化特征相近,南京和合肥相近;PM2.5逐小时浓度日变化曲线呈现两峰一谷型分布,最大值均出现在早晨,最小值均出现在下午16~17时之间;月平均浓度具有明显的季节变化特征,冬季最高,夏季最低;PM2.5浓度与风速呈现显著现负相关关系,受地面风向影响明显,污染物在主导风的作用下从上游污染源扩散至下风区域;与气温呈现负相关关系;从全年来看,PM2.5浓度与相对湿度呈现负相关关系,高湿度状态更有利于降水从而增加PM2.5湿清除;各个城市PM2.5浓度与气压相关性很弱,并且未通过显著性检验,可见气压是影响PM2.5浓度变化的次要因素;降水对PM2.5清除作用明显。不同城市PM2.5的变化特征及其受气象要素的影响存在差异,主要是由不同城市的地理环境、产业布局以及污染源等因素造成的。  相似文献   

7.
为探究天津蓟县大气细颗粒物(PM2.5)污染特征及气象因素对它的影响,搜集了2013年蓟县PM2.5质量浓度变化资料,对PM2.5污染情况进行了详细分析;并针对夏季典型天气,对PM2.5质量浓度进行监测,结合同步气象数据,运用线性回归及相关性分析方法研究PM2.5质量浓度与气象因素关系.结果表明:蓟县PM2.5质量浓度呈现明显冬高夏低特征,夏季污染超标率达45%,其日变化呈明显双峰型;PM2.5质量浓度受温度、相对湿度、风速、风向、降雨影响显著,与气压无显著关系,能见度随PM2.5质量浓度增大呈现e指数衰减规律.研究结果可为当前的京津冀区域大气污染协同防控提供一定的科学参考.  相似文献   

8.
针对高原山地城市PM2.5的污染及防治问题,利用2014年4月—2015年3月昆明市主城区PM2.5小时浓度平均值及对应的气象参数连续观测资料,采用普通克里格插值法、非参数分析法对昆明市主城区PM2.5浓度时空特征及其与气象因素的影响进行了研究分析.研究结果表明:昆明市主城区PM2.5浓度季节高低为春季冬季秋季夏季.PM2.5日变化趋势呈双峰单谷型,上午PM2.5浓度高于下午浓度,这种变化趋势与人们出行高峰和当天气象条件有关.普通克里格插值法得到昆明市PM2.5高浓度主要分布在主城区西北至东南一带,五华区、盘龙区浓度高于西山区、呈贡区.通过Spearman秩相关分析得出日均温度、气压、风速气象因子对环境PM2.5浓度的季节分布具有显著影响.  相似文献   

9.
北京市夏季大气气溶胶 PM2.5和 PM10成分特征?   总被引:3,自引:0,他引:3  
对北京市城区2012年夏季大气对气溶胶进行每日PM2.5和PM10石英膜采样,得到了可溶性离子质量浓度和16种元素的质量浓度,并结合气象观测值进行了分析.结果显示,采样期间,PM2.5质量浓度为9.58~210.42μg·m-3,平均值102.81μg·m-3;PM10质量浓度为33.75~288.33μg·m-3,平均值159.66μg·m-3.PM2.5和PM10质量浓度都与采样点能见度、风速呈负相关,与相对湿度呈正相关.质子荧光分析(PIXE)结果显示,S、K、Ca和Fe在PIXE可分析元素中含量较高,在PM2.5和PM10都占89%.且元素Ca、Ti、Sc、Cr、Fe主要存在于粗粒子(PM2.5~10)中,而元素S、Cu、Zn、As、Br、Pb主要存在于细粒子(PM2.5)中.富集因子分析表明,元素K、Ca、Ti、V、Mn、Ni主要为地壳来源,元素S、Cl、Cu、Zn、As、Br、Pb主要来自于人为源.SO2-4、NO-3、NH+43种可溶性离子总质量浓度占PM2.5浓度的43.5%,占PM10浓度的25.4%.  相似文献   

10.
以2017年PM2.5污染较为严重的贵州六盘水市为研究对象,分析PM2.5的月变化与季变变,探讨PM2.5污染来源与各个因子之间的关系。通过PM2.5与平均气温的相关性分析、PM2.5与平均植被指数的相关性分析,以月、季为时间尺度对六盘水市5的监测点(PM2.5)进行浓度变化分析。得出时间上六盘水市大气中PM2.5浓度变化具有季节性,季平均气温与季平均PM2.5呈负相关,各监测点(PM2.5)在冬季最高,各监测点平均PM2.5浓度达到55.16μg/m3,夏季最低为22.59μg/m3。季PM2.5浓度变化与季平均植被指数呈现负相关,植被覆盖的变化对大气PM2.5浓度变化有显著影响,在土地利用类型中耕地与领地的植被指数变化最大,土地利用类型当中的耕地与林地对大气中PM2.5浓度变化有显著影响。  相似文献   

11.
针对沈阳市大气环境分析了2011年7月至2012年3月期间沈阳市太原街、北陵街及科技园三处的PM2.5含量,研究表明:监测位置PM2.5超标率为15%,变化范围在0.02~0.07 mg/m3之间,冬季浓度高于夏季浓度,反映了主要源排放(燃煤)变化与气象条件的共同影响,并且监测PM10含量与PM2.5存在很好的线形关系,同时对PM2.5离子组分和多环芳烃进行了分析,发现PM2.5系颗粒物含有阴离子、多环芳烃等污染物,多环芳烃的含量在16.0~35.1 ng/m3之间.  相似文献   

12.
基于深圳市环境监测站的PM2.5浓度数据以及深圳市国家气候观象台发布的月度气象监测公报,研究了2012年至2019年深圳市PM2.5浓度的变化规律,分析了PM2.5浓度与月尺度气候要素的关系,并利用多元线性回归分析法建立了PM2.5月均浓度的预测模型。结果表明:2012年至2019年深圳PM2.5浓度呈明显下降趋势,PM2.5浓度有季节性特征,干季(1~3月及10~12月)PM2.5浓度比较高,也是PM2.5污染防控的重要时段。月降水日数、月降水量以及月平均温度与PM2.5浓度的负相关较明显,偏北风频率与PM2.5浓度呈显著正相关,可一定程度上帮助预判月均PM2.5浓度。与前人研究结果相反,月平均相对湿度与PM2.5浓度呈显著负相关。包含气象因素项以及PM2.5浓度项的月平均PM2.5浓度预报模型拟合度较高,偏北风频率、月平均相对湿度是对月平均PM2.5浓度影响最大的气象因素。利用深圳市2020年数据对模型进行检验,结果证明方程对于月平均PM2.5浓度的预报有一定适用性,可较好预报PM2.5浓度月增量。  相似文献   

13.
该文利用2012年5月~9月福州紫阳、厦门集美两地PM2.5的监测数据,分析了福州、厦门PM2.5的变化情况与气象条件之间的关系.结果表明:福州、厦门PM2.5浓度变化趋势较为相似,浓度峰值出现的时段基本相同;在高压楔控制、副热带高压的边缘、台风低压东南侧的天气条件下,PM2.5浓度升高现象明显;受夏季副热带高压的控制、台风天气的影响,6~9月福州、厦门两地的PM2.5浓度均处于较低水平.  相似文献   

14.
通过银川市2015年空气污染物质量浓度值分析,结果表明,PM10和PM2.5的浓度变化具有明显的季节特征和区域特征。PM10质量浓度春季高于夏季,秋季最低,PM10月均质量浓度变化均为1月份最大,9月份最小;PM10分指数等级冬季最差,PM10分指数等级秋季好于夏季;4#监测点各个季节PM10浓度均表现为最高。  相似文献   

15.
近年来,高浓度颗粒物所带来的霾污染在南通市经常发生,但已有文献对其关注较少。文章以南通市区5个大气环境监测站点发布的小时数据为基础,运用数理统计法详细分析了2014—2018年PM2.5浓度在不同时间尺度上呈现出的特征和变化规律。结果表明:1)年尺度上,5年间南通市区PM2.5平均质量浓度总体呈下降趋势,但逐年值均超过国家Ⅱ级污染限值,超出率为11%~74%,表明城市雾霾污染仍不可忽视。2)季节和月变化上,南通市区的PM2.5质量浓度为“冬季最高,春季次之,夏、秋两季最低”。除此之外,冬季污染日出现多,占全部污染日的54%,这反映出南通市区雾霾污染在冬季不仅污染严重且发生率高。在60个月份中,75%的月均值超过35μg/m3。3)日变化上,PM2.5日质量浓度概率密度曲线表明,南通市区出现频率最高的PM2.5日质量浓度为20~40μg/m3,表明大部分时段空气质量是优良状态;在24时刻内,PM2.5质量浓度变化呈“双峰型”曲线,上午9:00前后和晚间10:00前后污染最重,下午4:00污染最轻。从影响因素看,南通市区PM2.5污染特征与其地理位置及天气条件、人类活动污染排放等多种因素相关,尤其是地方特定的湿度环境有可能加剧霾污染程度。  相似文献   

16.
为深入探究东北地区雾霾天气污染现状,选取吉林省吉林市作为研究对象,于2016年夏季(非采暖期)和冬季(采暖期)各时期连续24h采集PM2.5样品.运用电感耦合等离子体质谱法(ICP-MS)分析了18种金属的浓度水平,选取其中的As、Al、Cr、Mn、Cu、Zn、Pb、Na、Ca、K和Mg 11种主要金属进行了细致研究;同时,运用气相色谱-质谱法分析了16种多环芳烃(PAHs)的浓度,对重金属和多环芳烃的污染情况进行了深入讨论.结果表明:吉林市采暖期PM2.5平均质量浓度为89μg/m~3,非采暖期平均为33μg/m~3;PM2.5中主要的重金属时空分布特征为除Ca以外采暖期均高于非采暖期,工业区居住区对照区.采样期间,冬季PM2.5中重金属污染较夏季严重,这可能与东北地区冬季供暖有关.吉林市PAHs采暖期质量分数为0.03~1 304.83mg/kg,非采暖期为0~223.13mg/kg,采暖期污染水平高于非采暖期,其中工业区污染较严重.源分析结果表明吉林市大气颗粒物中重金属和有机污染物PAHs主要来源于燃煤、石油化工、扬尘(建筑扬尘和土壤扬尘)、车辆混合污染,而且工业尘对PM2.5的贡献则是持续的.  相似文献   

17.
于2009年10月至2010年8月间采集郑州市大气颗粒物PM2.5与PM10样品,对其质量浓度及水溶性离子进行分析研究.结果表明:PM2.5在秋、冬、春、夏四季的质量浓度的平均值分别为134.9、121.6、77.9和102.0μg/m3,PM10在秋、冬、春、夏四季的质量浓度的平均值分别为193.2、184.0、140.9和140.5μg/m3,日均值超标率分别达77.8%和59%.PM2.5和PM10质量浓度呈现很好的相关性,春季粗粒子在PM10中的比例相对较高,而秋、冬和夏季细粒子是PM10的主要组成部分.主要的水溶性离子是SO2-4、NO-3和NH+4,大部分以(NH4)2SO4和NH4NO3形式存在;NO-3和SO2-4质量比小于1,说明采样期间郑州市大气以固定排放源污染为主.  相似文献   

18.
为了提高PM2.5浓度预报准确率,基于长短期记忆(LSTM)神经网络构建多变量混合预报模型(hLSTM),利用空气质量数据、气象数据和日期时间信息对长沙10个空气质量监测站未来24小时PM2.5浓度进行逐小时预报,并对模型精度进行评估。结果表明:hLSTM逐小时PM2.5预报模型误差随预报时效的增加呈现前陡后缓逐步增大,均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)分别从1 h的6.53 μg·m-3、4.03 μg·m-3和16.02%增大到24 h的20.62 μg·m-3、13.56 μg·m-3和47.34%;模型误差存在明显的季节性差异,呈现冬季>秋季>春季>夏季的特征;相较于基于决策树(DTs)、循环神经网络(RNN)和普通LSTM的预报模型,hLSTM模型能更好地提取长沙PM2.5浓度数据的时序特征,达到更高的预报精度;利用hLSTM模型对长沙2019年12月13日~16日重污染天气过程PM2.5浓度进行预报,各时效的预报结果均能反映污染过程中PM2.5的变化趋势,其中3 h内的预报结果与观测值吻合程度较高。可见hLSTM可较好提取长沙PM2.5浓度变化特征,为其短临预报提供一种新思路。  相似文献   

19.
本文测定了烟煤型城市枣庄2013年春季五个观测点PM2.5及四种水溶性阴离子浓度水平,并进行了污染特征分析.  相似文献   

20.
根据中国环境监测总站发布的2014年5月—2015年4月的中国城市各监测站点细颗粒物(Particulate Matter 2.5,PM2.5)质量浓度小时数据,将161座城市作为节点,以城市间PM2.5质量浓度的相关性与距离的比值作为边的权重,构建了中国城市PM2.5加权网络,并采用Girvan Newman算法(GN算法)对网络进行划分,得到了不同季节中国PM2.5污染的区域分布情况.结果表明,不同季节划分结果的模块性Q函数均在0.7左右,可采用复杂网络对中国城市PM2.5区域进行划分;全年和四季分别划分出7、9、13、6、8个区域,以具体划分结果和连片度衡量中国不同季节的PM2.5污染的区域性程度顺序如下:冬季秋季春季夏季;划分结果与大气污染防治规划提出的"三区六群"范围大致相同,但区域范围在不同季节均存在不同程度的差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号