首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
PM2.5空气污染问题目前是社会关注热点以及学术研究重点。该文对PM2.5污染的自然城市提取进行了研究,结合PM2.5的站点监测数据和气溶胶遥感数据并采用协同Kriging插值实现了PM2.5数据空间化,然后采用首尾分割分类方法实现了PM2.5污染分布的分类和污染自然城市的提取。对中国大陆PM2.5自然城市的提取结果进行了分析和讨论。结果表明:采用适当的分割阈值,首尾分割分类方法可以有效进行PM2.5污染自然城市提取工作,有助于决策者合理划分PM2.5联合治理的区域范围。  相似文献   

2.
京津冀区域是我国环境空气污染频发的重点区域之一.基于中国空气质量在线监测分析平台实时发布的2019年京津冀区域六个典型城市的颗粒物质量浓度数据,分析京津冀区域颗粒物污染特征.结果表明:京津冀区域日均PM2.5质量浓度小于等于60 μg/m3 天数占全年的68.49%-80.00%;PM10质量浓度小于等于140 μg/m3 天数占全年的75.14%-93.70%;京津冀区域颗粒物质量浓度的月分布呈“V”型规律,颗粒物质量浓度冬季最高,秋季和春季次之,夏季最低;颗粒物质量浓度日变化呈双峰型且与人为活动作息时间保持良好的一致性;应用皮尔逊相关分析法探讨不同城市间颗粒物的相关性,总结为东南和西南两条典型的显著相关路径;应用线性回归方法评估PM2.5与PM10的相关性,同一城市的PM2.5与PM10显著相关;应用空间差异率方法分析京津冀区域不同城市间颗粒物质量浓度的差异程度,石家庄和其他城市间的颗粒物空间差异率最高;天津与唐山的PM2.5空间差异最低,其COD值为0.14;天津和廊坊的PM10的空间差异最小,其COD值为0.14.  相似文献   

3.
针对上海市颗粒物的污染和防治问题,利用2014年4月14日—2015年3月24日10个国控监测点的PM2.5和PM10小时数据及对应的气象因素资料,以PM2.5质量浓度占PM10质量浓度的比例为研究对象,使用聚类分析和相关性分析PM_(2.5)/PM_(10)的时空分布特征.结果表明:P2.5和PM10的季节高低为冬春秋夏,PM_(2.5)/PM_(10)的季节分布在不同区域存在差异性.PM_(2.5)/PM_(10)的日变化呈现双峰型趋势,峰值出现在05:00和14:00左右,上午PM_(2.5)/PM_(10)高于下午.颗粒物质量浓度及PM_(2.5)/PM_(10)具有明显的"周末效应",这与车辆通行政策与人类作息时间变动相关.在空间分布上,颗粒物质量浓度及PM_(2.5)/PM_(10)均表现为背景站浦西站浦东站.  相似文献   

4.
利用四川盆地18个城市2015-2016年6种大气污染物质量浓度资料,采用了集中期、集中度和变异系数等统计学方法,对该地区大气污染的时空分布特征进行了分析,将四川盆地划分为3个区进行对比研究.结果表明,四川盆地18个城市中,大气污染最严重的是自贡市,年均空气质量指数为100,污染天数占总天数的37.6%;污染最轻的是广元市,年均空气质量指数为57,污染天数占总天数的4.5%.四川盆地3个区域按照污染物质量浓度高低以及出现污染天数的长短排序均为:川南经济区成都平原经济区川东北经济区.研究时间段内,18个城市PM_(2.5)年均质量浓度达标的只有广元市;PM_(10)年均质量浓度达标的只有广元市和巴中市;SO_2年均质量浓度18个城市均达标;NO_2年均质量浓度除成都市和重庆市外,其他16个城市均达标;所有城市的CO和O_3日质量浓度均达标.近36年来,颗粒物和SO_2质量浓度呈现不同程度降低,表明国家对大气污染物排放的管控措施对颗粒物和SO_2污染改善明显.污染物PM_(2.5)、PM_(10)、CO、NO_2和SO_2质量浓度的季节变化为冬季高,夏季低;O_3质量浓度季节变化则为冬季低,夏季高.PM_(2.5)、PM_(10)和O_3质量浓度高的时段相对于SO_2、NO_2和CO来说更为集中,PM_(2.5)、PM_(10)、SO_2、NO_2和CO高质量浓度时段主要集中在1月左右,O_3高质量浓度时段主要集中在6月左右.不同城市间SO_2和NO_2质量浓度差异明显,其他污染物质量浓度分布则较为均匀.  相似文献   

5.
模糊时序与支持向量机建模相结合的PM2.5质量浓度预测   总被引:1,自引:0,他引:1  
为解决进行PM2.5质量浓度预测中多因素回归模型的不稳定、神经网络模型的过拟合及局部最小等问题,提出应用支持向量机和模糊粒化时间序列相结合的方法,对PM2.5质量浓度未来变化趋势和范围进行预测.根据PM2.5不同季节的日变化周期模式,确定以24 h为周期的粒化窗宽,利用三角型隶属函数对数据样本进行特征提取作为支持向量机的输入,并在k重交叉验证法下采用网格划分寻找出模型的最佳参数.以2013年3月—2014年2月北京市海淀区万柳监测点四个季节PM2.5的1 h质量浓度监测值为样本数据,应用该方法建立PM2.5质量浓度的时间序列预测模型,并在MATLAB平台下应用LIBSVM工具实现计算过程.结果表明,基于模糊粒化时间序列的预测模型,能较好解决PM2.5机理性建模方式下由于影响因素考虑不全而造成的预测结果不稳定,对模糊粒子拟合效果较好.  相似文献   

6.
为探究天津蓟县大气细颗粒物(PM2.5)污染特征及气象因素对它的影响,搜集了2013年蓟县PM2.5质量浓度变化资料,对PM2.5污染情况进行了详细分析;并针对夏季典型天气,对PM2.5质量浓度进行监测,结合同步气象数据,运用线性回归及相关性分析方法研究PM2.5质量浓度与气象因素关系.结果表明:蓟县PM2.5质量浓度呈现明显冬高夏低特征,夏季污染超标率达45%,其日变化呈明显双峰型;PM2.5质量浓度受温度、相对湿度、风速、风向、降雨影响显著,与气压无显著关系,能见度随PM2.5质量浓度增大呈现e指数衰减规律.研究结果可为当前的京津冀区域大气污染协同防控提供一定的科学参考.  相似文献   

7.
近年来,高浓度颗粒物所带来的霾污染在南通市经常发生,但已有文献对其关注较少。文章以南通市区5个大气环境监测站点发布的小时数据为基础,运用数理统计法详细分析了2014—2018年PM2.5浓度在不同时间尺度上呈现出的特征和变化规律。结果表明:1)年尺度上,5年间南通市区PM2.5平均质量浓度总体呈下降趋势,但逐年值均超过国家Ⅱ级污染限值,超出率为11%~74%,表明城市雾霾污染仍不可忽视。2)季节和月变化上,南通市区的PM2.5质量浓度为“冬季最高,春季次之,夏、秋两季最低”。除此之外,冬季污染日出现多,占全部污染日的54%,这反映出南通市区雾霾污染在冬季不仅污染严重且发生率高。在60个月份中,75%的月均值超过35μg/m3。3)日变化上,PM2.5日质量浓度概率密度曲线表明,南通市区出现频率最高的PM2.5日质量浓度为20~40μg/m3,表明大部分时段空气质量是优良状态;在24时刻内,PM2.5质量浓度变化呈“双峰型”曲线,上午9:00前后和晚间10:00前后污染最重,下午4:00污染最轻。从影响因素看,南通市区PM2.5污染特征与其地理位置及天气条件、人类活动污染排放等多种因素相关,尤其是地方特定的湿度环境有可能加剧霾污染程度。  相似文献   

8.
采用WRF/CALPUFF耦合模型,对哈尔滨市2013年10月15日~10月24日一次严重雾霾污染天气进行模拟,得到此次雾霾污染PM2.5质量浓度分布特征.模拟结果表明,由于"热岛效应"的存在发生严重污染的区域主要集中于哈尔滨市辖区内,周边区县存在不同程度的污染.气象条件也对本次雾霾现象产生重要影响,10月20日及21日两天,气温偏高(最高18℃,最低5℃)、相对湿度较大(98%)、夜间混合层高度小于100 m,伴随静风天气导致雾霾现象极其严重,空气质量等级为六级,市辖区内PM2.5质量浓度最大值超过1 000μg/m3.  相似文献   

9.
针对高原山地城市PM2.5的污染及防治问题,利用2014年4月—2015年3月昆明市主城区PM2.5小时浓度平均值及对应的气象参数连续观测资料,采用普通克里格插值法、非参数分析法对昆明市主城区PM2.5浓度时空特征及其与气象因素的影响进行了研究分析.研究结果表明:昆明市主城区PM2.5浓度季节高低为春季冬季秋季夏季.PM2.5日变化趋势呈双峰单谷型,上午PM2.5浓度高于下午浓度,这种变化趋势与人们出行高峰和当天气象条件有关.普通克里格插值法得到昆明市PM2.5高浓度主要分布在主城区西北至东南一带,五华区、盘龙区浓度高于西山区、呈贡区.通过Spearman秩相关分析得出日均温度、气压、风速气象因子对环境PM2.5浓度的季节分布具有显著影响.  相似文献   

10.
北京市城区单监测点PM2.5质量浓度变化特征   总被引:1,自引:0,他引:1  
2009年在北京师范大学科技园内对PM2.5质量浓度的连续监测结果表明,PM2.5质量浓度的年均值为55.2μg.m-3,日均值在1.2~325.9μg.m-3之间变化,且频数分布呈现出明显的倾斜:大量的质量浓度值位于30~70μg.m-3之间;季节变化特征为冬季PM2.5污染水平明显高于其他季节;不同季节的日变化模式存在显著差异:整体上是冬季夜间质量浓度高于白天,夏季白天质量浓度高于夜晚,同时在各个季节下午16:00以后质量浓度都存在回升现象.  相似文献   

11.
衡阳市夏秋季大气颗粒物污染特征   总被引:2,自引:1,他引:1  
为了得到衡阳市区大气颗粒物的污染水平及分布特征,本文根据衡阳城区特点及人员活动规律,以2013年8月25-27日和11月27-29日作为夏秋季代表日,在人员活动最为集中的交通主干道附近进行了定点实地测量,包括作为参照的南华大学共设6测点.结果表明,秋季PM2.5浓度明显高于夏季,数浓度前者为后者的2.27-3.13倍,质量浓度前者为后者的1.74-3.74倍.从整体特征而言,颗粒直径基本在5μm以下,其中PM2.5数量在PM10中占比达99.5左右,而PM1.0又约占到了PM2.5的97%;早8点和晚8点左右是人员户外活动高峰期,也是PM2.5浓度最高的时段,中午和午后水平较低,夏季PM2.5和PM10质量浓度均在国家二级标准限值以内,秋季部分区域超出限值,同时对各测点进行了颗粒物污染程度排序.本文还通过实验发现,洒水对降低PM2.5和PM10的浓度都是有效的,有效时段为洒水后第11至24小时.  相似文献   

12.
通过银川市2015年空气污染物质量浓度值分析,结果表明,PM10和PM2.5的浓度变化具有明显的季节特征和区域特征。PM10质量浓度春季高于夏季,秋季最低,PM10月均质量浓度变化均为1月份最大,9月份最小;PM10分指数等级冬季最差,PM10分指数等级秋季好于夏季;4#监测点各个季节PM10浓度均表现为最高。  相似文献   

13.
为分析长沙市PM2.5浓度时间变化特征、空间分布特征及其影响因子,利用数据统计分析、克里金空间插值技术、地理探测器等方法与Arc GIS平台表达,选取长沙市中心城区10个监测点2013—2019年PM2.5日变化数据.结果显示:在PM2.5浓度时间变化特征方面,不同季节中,PM2.5浓度表现出冬季>秋季>春季>夏季的季节特征,不同时段中,各季节PM2.5浓度日均小时变化曲线均大致呈双峰形态;在PM2.5浓度空间变化特征方面,PM2.5浓度的高值区主要分布在中部芙蓉区,整体呈城区向郊区逐渐递减的变化规律.根据地理探测器研究结果发现,2017年长沙主城区PM2.5浓度主要受气温、降雨和风速因子影响,其次是道路、相对湿度、气压和人口密度,高程、植被和餐饮因子影响较小;且任意两个影响因子共同作用均会对PM2.5浓度影响增强.  相似文献   

14.
通过实验采样分析,研究了西安市冬季不同空气质量级别(HJ 633—2012)下PM2.5质量浓度及化学组分的变化特征和污染规律。结果表明,西安市2008—2009年冬季所有采样天均为轻度污染到严重污染状况,PM2.5质量浓度100%未达标(GB3095—2012);PM2.5质量浓度及其化学组分基本随空气质量级别恶化而增加,除个别元素外,其他化学组分的质量浓度在严重污染时均出现突增,有机碳(4.5倍)和水溶性无机离子(2.7倍)的增加倍数较大;随大气污染程度的增加,人为源的重金属富集因子增加剧烈(1.6~2.0倍),而主要来自自然源的元素富集因子变化无规律;重污染时期PM2.5中的多环芳烃(PAHs)、正构烷烃(nalkanes)均主要来自人为源排放贡献,其中生物质燃烧、低温燃煤排放是PAHs剧增的主要因素。  相似文献   

15.
北京市大气PM2.5的季节特征和空间趋势(英文)   总被引:1,自引:0,他引:1  
近年来,北京地区雾霾污染事件频发,大气PM2.5污染引起国内外强烈关注.利用北京市35个PM2.5监测站自2012年10月开始发布数据至2013年9月的小时观测数据,对其时空变化特征进行了分析.结果表明:(1)35个站点的平均PM32.5浓度为88.6μg/m;(2)PM2.5浓度与风速等气象要素关系密切,低浓度通常出现在大风天或者大风过后的紧邻时段,重污染天通常风速小,相邻天的PM2.5浓度可相差几倍甚至十倍以上;(3)PM2.5浓度随季节变化较大,1月和6月份较高,4月、8月和11月相对较低;(4)PM2.5浓度随站点类型变化明显,交通环境站点的平均浓度高于城市环境评价站点(可超过10%);(5)北部PM2.5浓度低于东部和南部,而与河北交界的南部和西南地区浓度为全区最高;(6)PM2.5浓度由北到南整体上呈线性增加趋势,每向南10 km,PM2.5平均浓度升高4.6μg/m3(R2=0.89),南部PM2.5平均浓度接近北部2倍;(7)PM2.5平均浓度存在一定的局部变化,但相邻站点变化幅度一般在20%以内.  相似文献   

16.
该文介绍了PM2.5细粒子污染重要的空气质量指示意义.利用2010年~2011年福州市PM2.5观测资料,分析了福州市细粒子污染的分布状况、主要特征及与气象条件的关系.结果表明:福州市PM2.5年平均浓度接近新标准规定的35ug/m3,污染程度较轻;月平均浓度峰值出现在5月,谷值出现在7月;季节分布高低排序为春季>冬季>秋季>夏季,春季污染最严重,一级超标率达72.7%,夏季最轻;日分布呈单峰型,中午前后浓度最高;PM2.5浓度月季分布特征明显,说明PM2.5浓度变化与天气条件关系密切.  相似文献   

17.
环境空气质量对当地居民的生活和幸福指数至关重要。空气质量越来越受到政府的关注。本文对重庆市环境空气质量进行综合评价研究,具体分析了重庆市2013—2018年环境空气质量的状况及变化趋势。收集重庆市2013—2018年主要环境空气污染物(PM2.5、PM10、SO_2)的月度统计历史数据平均浓度监测数据,按照《环境空气质量标准》(GB3095-2012)中的二级标准,用空气综合污染指数评价法和空气污染负荷系数法分析其变化特征和环境空气质量影响因素。结果表明,2013—2018年大气PM2.5月度浓度大多超过平均年浓度限值,PM10浓度月度均值也大多也超标,SO_2均达标。相关的整改措施使得大气中PM2.5与PM10均呈浓度下降状态,SO_2基本呈稳定状态。年内变化显示,各污染物的浓度季节变化非常明显,污染物浓度从高到低的顺序大体为冬季、春季、秋季、夏季。全市的综合污染指数呈下降趋势,空气污染程度显著降低,空气质量不断变好。研究结果可为相关部门提供一定的参考。  相似文献   

18.
依据2013年银川市城市环境空气质量大气细颗粒物(PM2.5)的监测数据,对银川市环境空气中PM2.5的污染现状、变化趋势及与气象因子关联性进行了系统分析.结果表明,银川市PM2.5的质量浓度变化呈现明显的采暖季和非采暖季2种典型的季节性特征,非采暖季PM2.5的质量浓度与气压呈显著的正相关,与气温、能见度呈显著的负相关,采暖季PM2.5的质量浓度与风向、相对湿度呈显著的正相关,与风速、气温、能见度呈显著的负相关.  相似文献   

19.
中国大范围雾霾期间大气污染特征分析   总被引:24,自引:0,他引:24       下载免费PDF全文
为分析我国2013年1月份大范围雾霾成因及特点,在收集相关污染物与气象数据的基础上,运用主成分及相关性分析,对雾霾期间我国8个重点城市大气细颗粒物(PM2.5)浓度、粒径分布,时空变化规律,雾霾与气象因素的关系以及雾霾期间各城市大气污染指标的主成分及相关性进行了分析.结果显示雾霾期间8个城市PM2.5平均超标2.34倍,11~14号超标最为严重,PM2.5/PM10浓度比值平均为0.72,高湿、逆温、低压、静风等气象条件有利于雾霾的形成,PM2.5与SO2,NO2等表现出较好的相关性,主成分分析表明多数城市表现出明显的复合污染特征.此次雾霾是以特殊气象条件为主导的机动车尾气及煤烟型复合污染引起的大范围污染现象.  相似文献   

20.
2012年环境空气质量标准修订后,大气污染物监测指标与频次发生变化,在一定程度上影响了城市空气质量评价及污染特征判定。为进一步促进城市空气质量改善,为地方环境管理与决策提供科学支撑,通过运用统计分析、趋势检验及相关分析等方法研究了济南市执行新环境空气质量标准后,各时段城市空气质量及6项污染物浓度变化趋势,在此基础上识别了空气污染特征。结果表明:自2013年起,PM10、PM2.5浓度不断下降,SO2、CO持续达标,近3年间全市无污染天数占50%左右;从季节变化来看,冬季大气污染最为严重,夏秋两季空气环境质量较好;PM10、PM2.5与NO2长期处于超标水平,O3污染愈加严重。可见济南市环境空气质量虽日趋改善,但以PM10、PM2.5和O3污染为代表的复合型大气污染特征已经形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号