首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用离子束增强沉积方法在室温和不同能量的氮离子轰击条件下制备了不同调制周期的ZrN/W纳米多层膜. 利用XRD, AES和纳米压痕仪分析了调制周期和离子轰击能量对薄膜结构和机械性能的影响, 结果表明多层膜的机械性能基本都优于单质的ZrN或W薄膜. 和其他制备条件相比, 在300 eV能量的氮离子轰击下制备的调制周期为 8~9 nm的多层膜, 其结构中出现了强的 ZrN(111), W(110)和 ZrN(220)织构的混合, 它的硬度和弹性模量分别达到 26 和 310 GPa, 也展示了较高的耐磨性.  相似文献   

2.
具有高温稳定性的ZrAlN薄膜的合成   总被引:2,自引:0,他引:2  
干磨可以造成工具表面的温度上升到800~1000℃. 因此, 能在如此高温度下为切削工具提供保护的膜层已成为研究的热点. ZrAlN由于Al元素的存在可能具有高温稳定的结构和机械性能. 用直流磁控溅射的方法合成了ZrAlN 薄膜. 利用XRD与纳米压痕仪分析了反应气体分压和基底偏压对薄膜结构、机械性能及其高温热稳定性的影响. 在最佳条件(基底偏压-37 V, N2分压为2×10-5 Pa)制备的ZrAlN薄膜具有平滑的表面且其硬度具有热稳定性. 在退火之后, 该薄膜的应力由2.2 GPa降至0.7 GPa. 薄膜的高温热稳定性可能与Al2O3和ZrO2晶相的形成有着直接的联系.  相似文献   

3.
研究了利用电化学原子层外延法(electrochemical atomic layer epitaxy, ECALE)在Pt电极上生长Sb2Te3化合物半导体薄膜热电材料的过程. 采用循环伏安扫描分别研究了Te和Sb在Pt衬底上以及在覆盖了一层元素之上的电沉积特性, 在此基础上使用自动沉积系统交替电化学沉积了400个Te和Sb原子层. 采用XRD, FESEM和FTIR等多种分析测试手段对沉积薄膜的结构、形貌、禁带 宽等进行了表征. XRD结果表明, 沉积物是Sb2Te3化合物, 与EDX定量分析和 电量计算结果吻合; FESEM对薄膜表面及断面形貌检测表明沉积颗粒排列紧 密、大小均匀, 平均粒径约为20 nm, 薄膜均匀平坦, 膜厚约190 nm; 由于沉积薄膜的纳米结构, FTIR吸收谱出现蓝移, 测得Sb2Te3薄膜禁带宽为0.42 eV.  相似文献   

4.
采用基于密度泛函理论的第一性原理计算方法, 对H 原子在Cr2O3 晶格中占据不同位置时的体系能量进行计算, 结果表明H 原子在Cr2O3 晶格中的最稳定位置位于无原子占据的氧八面体间隙中心的两侧. 通过对比H原子在八面体间隙不同位置处所导致的Cr2O3 晶格畸变以及Cr2O3_H体系的态密度的变化, 分析了产生上述现象的原因. 通过寻找H 原子在 Cr2O3 晶格中迁移路径和过渡态, 得到H 原子的扩散激活能为0.73 eV. 并利用分子动力学计算得到H 原子在Cr2O3 晶格中的有效跃迁频率, 结合扩散激活能数据获得H 原子在Cr2O3 晶体中的扩散系数.  相似文献   

5.
采用磁控溅射方法制备了Ta/NiFe/非磁金属隔离层/FeMn多层膜, 研究了交换耦合场Hex相对于非磁金属隔离层厚度的变化关系. 实验结果表明: 随非磁金属隔离层厚度的增加, 以Bi和Ag为隔离层的Hex薄膜急剧下降, 以Cu为隔离层的薄膜的Hex下降较缓慢. 对Cu而言, 它的晶体结构与NiFe层晶体结构相同且晶格常数相近, Cu层以及FeMn层都可以相继外延生长, FeMn层的(111)织构不会受到破坏, 因此, Hex随Cu沉积厚度增加缓慢下降. 对Ag而言, 虽然它的晶体结构与NiFe层晶体结构相同, 但晶格常数相差较大, Ag层以及FeMn层都不可能外延生长, FeMn层的织构将会受到破坏, Hex随Ag沉积厚度增加迅速下降. 对Bi而言, 不仅它的晶体结构与NiFe层的不同, 而且晶格常数相差也较大, 同样, Bi层以及FeMn层也不可能外延生长, FeMn层的织构也会受到破坏, 因此, Hex也随Bi沉积厚度增加迅速下降. 但是, X射线光电子能谱研究表明: 极少量的表面活化原子Bi沉积在NiFe/FeMn界面时, 会上浮到FeMn层表面, 因而Hex下降很少.  相似文献   

6.
采用射频溅射法分别在零磁场和72 kA/m的纵向静磁场下, 制备了结构为(F/SiO2)3/Ag/(SiO2/F)3 (F=Fe71.5Cu1Cr2.5V4Si12B9)的多层复合膜. 研究了沉积态样品的软磁特性和巨磁阻抗(GMI)效应. 结果表明, 在无磁场沉积态样品中未探测到GMI效应. 在沉积过程中加纵向磁场明显优化了材料的软磁性能, 从而获得显著的GMI效应. 在6.81 MHz的频率下, 最大纵向和横向GMI比分别高达45%和44%. 同时还分析了磁阻抗比、磁电阻比、磁电抗比和有效磁导率比随频率变化的行为, 发现磁场沉积态样品的纵向和横向GMI效应随频率变化的频谱曲线几乎重合. 阻抗在低频下主要是巨磁电感效应. 当频率 f >9 MHz时, 磁电抗比变为负值, 即电抗的性质从电感性变成了电容性.  相似文献   

7.
用磁控溅射法分两种顺序制备了系列厚度的[CoPt/Ag]n纳米多层膜, 600℃真空退火后, 进行了磁性测量和微结构分析. 研究表明, 退火后两种顺序制备的[CoPt/Ag]n多层膜有着不同的微结构和磁性能, 且膜厚越小差别越显著. 先沉积Ag层的[Ag/CoPt]n多层膜, 退火后更易于形成高有序化度的L10-CoPt相, 并具有较高的矫顽力. Ag作底层影响了CoPt无序立方向有序四方的转化是引起这种差别的可能原因. 剩磁曲线分析表明, Ag的掺杂有利于降低CoPt晶粒间的磁交换耦合作用.  相似文献   

8.
采用电沉积硫化亚铁膜之后再硫化的方法制备了FeS2薄膜材料. 即先用含铁和硫元素的水溶液在导电玻璃上电化学沉积FeS薄膜, 然后将薄膜在硫气氛中退火制得FeS2样品. 计算了电沉积FeS薄膜的实验参数, 研究了硫化过程中温度对FeS2结构的影响及晶粒的生长动力学过程, 计算了晶粒生长的表观活化能、生长速率常数及时间指数, 并对样品的电学性能进行了分析.  相似文献   

9.
用分子沉积技术制备了聚丙烯胺(PAH)/石墨氧化物(GO)多层分子沉积薄膜, 为了增大薄膜自身的结合强度, 采用加热的方式使其成膜动力发生转变. 用紫外光谱及原子力显微镜(AFM)考察了薄膜的微观结构及其纳米摩擦学性能. 结果表明, 薄膜能够有效降低玻璃表面的摩擦, 加热后薄膜成膜动力由静电结合转变为价键结合的形式, 同时摩擦力的变化取决于薄膜表面硬度和形貌.  相似文献   

10.
过渡金属及其碳化物薄膜现已广泛应用于微电子、能源及催化等领域.等离子体辅助原子层沉积能够产生高活性的反应粒子,具有沉积温度低、反应充分等特点,能在复杂3D结构基底上制备连续、保形的高质量过渡金属及其碳化物薄膜.本文首先介绍了等离子体辅助原子层沉积技术的基本原理,然后综述了当前等离子体辅助原子层沉积制备金属及其碳化物的研究进展,重点论述了等离子体辅助原子层沉积在降低沉积温度、缩短成核周期、增强反应活性、提高薄膜沉积速率及纯度等方面的优势,最后对该技术未来的发展进行了展望.  相似文献   

11.
采用直流磁控溅射方法在p型(100)Si基体上制备了不同相结构的W-Ti纳米晶薄膜阻挡层及其对应的Cu/W-Ti/Si复合膜, 并对薄膜样品进行了退火热处理. 用四探针电阻测试仪(FPP), XRD, AFM, XPS, FESEM, HRTEM等分析测试方法对不同相结构的薄膜样品退火前后的电阻特性和形貌进行了分析表征. 实验结果表明, 退火温度低于 700℃时, 薄膜基本上保持稳定; 随着退火温度的增加, Cu与Ti反应生成CuTi3, 同时Si与Cu发生互扩散形成高阻相Cu3Si, 导致了表面粗糙度增加使方块电阻急剧增加. 同时提出了Cu布线用W-Ti纳米晶薄膜扩散阻挡层退火过程中的失效机理.  相似文献   

12.
在0~6 GPa压力下研究NaNbO3材料的合成及结构随压力变化的规律.通过施加压力, 在相对较低的温度(300℃)下可以合成纯度高的NaNbO3陶瓷粉料, 极大地降低了Na元素的挥发. 随着压力的增加, 合成的NaNbO3陶瓷材料具有从对称低的晶格体结构向对称高的晶格体结构转化的趋势.  相似文献   

13.
采用Sol-gel法在Pt/Ti/SiO2/Si衬底上制备了Bi3.25La0.75Ti3O12 (BLT)薄膜. 制备的BLT薄膜具有单一的钙钛矿晶格结构, 而且表面平整致密. 对700℃退火处理的BLT薄膜进行了铁电性能、疲劳特性和漏电流测试: 在测试电压为10 V时, 剩余极化值2Pr大约是18.6 μC/cm2, 矫顽电压2Vc大约为4.1 V; 经过1×1010次极化反转后, 剩余极化值下降了大约10%; 漏电流测试显示制备的BLT薄膜具有良好的绝缘性能. 室温下, 在测试频率1 kHz时, 薄膜的介电常数为176, 介电损耗为0.046.  相似文献   

14.
从理论计算和实验验证两方面进行了氧缺位金红石型TiO2-x薄膜的电子结构和血液相容性关系的研究. 基于局域密度泛函理论, 采用第一性原理方法计算了不同氧缺位浓度下金红石型TiO2-x的电子结构. 计算结果表明, 在现实可行的氧缺位浓度范围内(小于或等于10%), 随着氧缺位浓度的增加, TiO2的禁带宽度增大, 氧化钛的半导体类型由p型向n型转变. 不同氧缺位浓度下TiO2的价带顶主要由O的2p轨道贡献, 导带底主要由Ti的3d轨道贡献. 氧缺位浓度的提高导致了 TiO2导带底电子态密度的增加. 当材料与血液接触时, 氧缺位TiO2-x薄膜的n型半导体和电子态占据导带底特征可抑制血液中纤维蛋白原向材料表面传递电荷, 进而抑制血小板的聚集和活化, 从而提高了金红石型TiO2-x薄膜的血液相容性.  相似文献   

15.
将真空共蒸发技术沉积的ZnTe/ZnTe:Cu复合薄膜应用于CdS/CdTe太阳电池, 作为碲化镉与金属背电极间的过渡层. 比较了有无ZnTe复合背接触层的两种CdTe电池的光、暗电流-电压(I-V)曲线和电容-电压(C-V)特性, 并研究了本征ZnTe薄膜厚度和背接触层的退火温度对电池性能的影响. 结果表明, 有复合背接触层的CdTe光伏器件, 能够消除暗I-V曲线饱和与光、暗I-V曲线交叉现象, 且填充因子在没有高阻透明薄膜的情况下达到了73%. 结合CdTe电池的能带图讨论了其中的原因.  相似文献   

16.
实验结果表明Ta/NiFe/FeMn/Ta多层膜的交换耦合场Hex要大于Ta/NiFe/Cu/NiFe/FeMn/Ta自旋阀多层膜中的Hex. 为了寻找其原因, 用X射线光电子能谱(XPS)研究了Ta(12 nm)/NiFe(7 nm), Ta(12 nm)/NiFe(7 nm)/Cu(4 nm)和Ta(12 nm)/NiFe(7 nm)/Cu(3 nm)/NiFe(5 nm) 3种样品, 研究结果表明前两种样品表面无任何来自下层的元素偏聚, 但在第3种样品最上层的NiFe表面上, 探测到从下层偏聚上来的Cu原子. 认为: Cu在NiFe/FeMn层间的存在是Ta/NiFe/Cu/NiFe/FeMn/Ta自旋阀多层膜的Hex低于Ta/NiFe/FeMn/Ta多层膜Hex的一个重要原因.  相似文献   

17.
利用Sol-gel法在p-Si(111)衬底上制备了LaNiO3底电极, 再利用Sol-gel法在LaNiO3底电极上制备出Bi4Zr0.5Ti2.5O12(BZT)铁电薄膜, 对其微观结构和电学性能进行了研究. 利用X射线衍射仪、原子力显微镜和扫描电镜观测其微观结构, 发现制备的BZT薄膜具有单一的钙钛矿晶格结构, 并且薄膜表面晶粒尺寸均匀, 结晶情况良好. 对Pt/BZT/LaNiO3电容结构进行了铁电性能研究, 在测试电压为25 V时, 2Pr和2Vc分别达到28.2 μC/cm2和14.7 V; 经过1×1010次极化反转后, 剩余极化值下降了大约13%; 室温下, 在测试频率1 kHz时, 薄膜的介电常数为204, 介电损耗为0.029; 漏电流测试显示制备的BZT薄膜具有良好的绝缘性能; C-V曲线为顺时针方向回滞, 存储窗口大约为3.0 V, C-V特性测试显示这种Pt/BZT/LaNiO3结构有望实现极化型存储.  相似文献   

18.
Zr基大块非晶合金在不同温度下的拉伸和压缩性能   总被引:1,自引:0,他引:1  
研究了Zr41Ti14Cu12.5Ni10Be22.5大块非晶合金的力学性能. 用Gleeble-3200热模拟机在过冷液相区内的345和375℃两个温度下进行了压缩试验, 发现减小压缩速率和提高温度对压缩变形的影响基本相似; 用Instron万能材料试验机测试了合金的室温和低温拉伸性能. 在低温下合金的拉伸强度随试验温度的降低而下降. 硬度测试结果显示, 在玻璃转变温度以下, 硬度随热处理温度升高和退火时间的延长而降低; 在玻璃转变温度以上退火, 硬度提高.  相似文献   

19.
采用Sol-gel法在Pt/Ti/SiO2/Si衬底上制备Bi3.4Ce0.6Ti3O12薄膜. 利用X射线衍射仪和原子力显微镜对其微观结构进行了观察, 发现制备的薄膜具有单一的钙钛矿晶格结构, 而且表面平整致密. 对Bi3.4Ce0.6Ti3O12薄膜的介电、铁电、疲劳和漏电流等性能进行了研究, 结果表明: 室温下, 在测试频率1 kHz时, 其介电常数为172, 介电损耗为0.031; 在测试电压为600 kV·cm-1, 其剩余极化值2Pr达到了67.1 μC·cm-2, 具有较大的剩余极化值, 矫顽场强2Ec也达到了299.7 kV·cm-1; 经过4.46×109次极化反转后, 没有发生疲劳现象, 表现出良好的抗疲劳特性; 漏电流测试显示制备的Bi3.4Ce0.6Ti3O12薄膜具有良好的绝缘性能.  相似文献   

20.
反应合成Ag(111)/SnO2(200)复合材料界面结构的DFT研究   总被引:1,自引:0,他引:1  
根据 HTEM 原位观察的 Ag/SnO2 电接触材料的两相界面结构, 建立了 Ag(111)/ SnO2(200)界面结构模型. 原子驰豫位移的计算结果显示, 驰豫引起界面原子严重错排, 破坏了点阵周期性排列. 界面区的O与Ag原子为达到稳定结构而彼此有靠近的趋势, 界面的结构驰豫是材料系统降低能量的一种方式. 界面附近态密度表明界面对材料的导电性有很大影响, 界面 O 原子的存在引起了材料导电性下降. 界面区域电子云和布居分析表明, 在Ag/SnO2界面结构中未形成 AgxOy 化合物, 且界面会导致电荷分布不均匀, 在整个材料系统内形成微电场, 影响电子传输和材料的导电性. 计算显示 Ag(111)/SnO2(200)界面结合较强, 界面结合能约为−3.50 J/m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号