首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 函数极限证明的基本思想 要证明x→x_0(或x→∞)时函数f(x)的极限是A,当ε>0后,如果我们能找到以x_0为中心的δ邻域(x_0-δ,x_0+δ)(或N>0),当x取这邻域中异于x_0的一切值(或|x|>N)时,不等式 | f(x)-A|<ε 恒能得到满足,则就证明了x→x_0(或x→∞)时,f(x)的极限是A。 问题在于怎样找到上述要求的点x_0的δ邻域(和N)? 从函数极限的精确定义中,我们知道,如果x→x_0时,f(x)的极限是A,则点x_0的δ邻域  相似文献   

2.
数学分析对有穷导数(导数)与无穷导数都有说明,本文将深入探讨它们的一些性质,且比较它们的同、异性,得到如下的结果。定理1 设f(x)在O(x_0,Δ)(Λ∈R~+)中有定义,f′(x_0)=+∞(或-∞),则 (ⅰ)在点x_0,f(x)不一定连续(与有穷导数不同)。 (ⅱ)δ>0(δ<Δ),使x∈(x_0—δ,x_0)时,f(x)f(x_0));x∈(x_0,x_0+δ)时,f(x)>f(x_0)(或f(x)相似文献   

3.
复合函数求导的链武法则是:设函数 u=(?)(x)在点 x_0处可导,y=f(u)在点 u_0(u_0=(?)(x_0))可导,则复合函数 f_0(?)(x)在点 x_0可导,且(f_0(?))′(x_0)=f′(u_0)(?)′(x_0)。对于这个法则,我们给出一个新的证明。为此先引入两个引理。定义设 E(?)R。f在 E 上有定义,x_0。∈(?)((?)是 E 的闭包),如果存在常数 l,对于任给ε>0,存在δ>0,当x∈(x_0-δ,x_0+δ)∩E-{x_0}时,恒有 f(x)∈(l-ε,l+ε),则称 f 在x_0关于 E 有极限 l。记作 l=(?)f(x)。  相似文献   

4.
同济大学数学教研室主编的《高等数学》(第三版)是目前工科院校广泛使用的一种教材,该教材中对于函数极值是如下定义的: 设函数f(x)在区间(a,b)内有定义,x_0是(a,b)内的一个点。如果存在着点x_0的一个邻域,对于这邻域内的任何点x,除了点x_0外,f(x)f(x_0)均成立,就说f(x_0)是函数f(x)的一个极小值。  相似文献   

5.
在二元函数 Z=f(x,y)的极限问题中,自变量的变化情况较一元函效复杂得多。因为 f(x,y)的定义域是 XOY 平面上的一个区域,动点(x,y)趋于定点(x_0,y_0)的路径可以是多种多样的。只有当动点(x,y)沿着任意路径趋于定点(x_0,y_0),函数 f(x,y)总是趋于某数 A 时,才能称A 为 f(x,y)当 x→X_0,y→y_0时的极限。因此二元函数的极限比一元函数的极限复杂且难求。本文总结了计算二元函数极限的方法,并通过例题作出一些说明。  相似文献   

6.
设非线性函数,f(x)∈C[-1,1]是非负的,f′(x)∈C[-1,1],f■(x)=f(x) ε,其中ε<0,C■是与ε无关的常数,当,f(x)满足[f'(x)]~2/f_■(x)≤C■时,存在次数不超过n的代数多项式P_n(x),使得f(x)-1/P_n(x)1≤C_f~″·1/nω(f′,1/n)(C_f~■仅与C■有关)。根据这个定理,得到多项式f(x)=x~2或x_ ~2的倒数的逼近阶是0(2/n~2)。  相似文献   

7.
文[1]、[2]给出了二元齐次有理分式函数在原点的极限存在判别法。本文把它们推广到一般n元齐次函数。在此基础上给出齐次函数在原点可微性判别法。下面讨论的齐次函数采用如下定义: 设函数f(x)(X=(x_1,x_2,…x_n))在点集上有定义。若对任意实数t≠0恒成立等式f(tX)=t~mf(X),则称f(X)为m次齐次函数。这里m可以是任意实数,并假定D如果含有点X也必含有t>0的一切点tX。我们下述极限定义: 设f(X)是定义在D上的函数,A是实数。若任给ε>0,存在δ>0,使当  相似文献   

8.
本文证明广义函数的乘积ε(x)δ(x)sinkx=0。利用这个结果我们证明ψ=(1-(c/2)ε(x))sinkx是schrodinger方程-(d~2/dx~2)ψ cδ(x)ψ=Eψ的解。  相似文献   

9.
证明了定义在[a,b]上的有界函数f(x),若只有第一类间断点,则f(x)在[a,b]上Riemann可积,另外,证明了一个导函数只能有第二类间断点,有间断点的单调函数不存在原函数。  相似文献   

10.
作为半局部伪线性函数和η-伪线性函数的推广,本文利用半可微性提出了一类新的广义凸性函数一半局部η-伪线性函数.同时,本文建立了f在Γ上是半局部η-伪线性的当且仅当存在p:Γ×Γ→R,满足p(x,y)>0,(V)x,y∈Γ,∫(y)=f(x)+p(x,y)df+(x,η(y,x))等性质.本文的结果是对文献[2]和[4]...  相似文献   

11.
定义对于函数f(x),若在其定义域的某个区间M上任意取两个数x_1,x_2,它们对应的函数值分別为f(x_1),f(x_2), (1)如果当x_1f(x_2),则称函数f(x)在区间M上是严格递減的; (4)如果当x_1相似文献   

12.
本文考虑在[0,1]上只具有第一类间断点的有界函数f(x),用它的n阶Bernstein-Durrmeyer多项式M_n(f,x)来逼近,给出了点态的逼近阶。  相似文献   

13.
关于Legendre多项式零点为节点的Hermite.Fejer插值算子,文[1]指出,对于f(x)∈C[-1,1],在(-1,1)的任意内闭区间上,H—F算子一致收敛于f(x)。由于Legendre多项式零点不像Tchebyshev多项式零点那样能用显式表出,因此,对其逼近阶的估计稍为困难.崔明根在[2]中给出的逼近阶估计为O(1)1/(1-x~2)ω(f,1/(n~(1/2)))本文给出进一步估计,得到逼近阶为O(1)1/(1-x~2)ω(f,(lnn)/n),这里ω(f,δ)的为函数f(x)连续模。记1>x_1~(n)>x_2~(n)>…>x_2~(n)>-1为n阶Legendre多项式L_n(x)的n个零点,{C_k~(n)}_k~n=1为[-1,1]上Legendre-Gauss数值积分系数,则有  相似文献   

14.
本文给出了几乎处处上半连续的函数族测度逼近几乎处处有限可测函数的一个充要条件,并由此给出几个直接结果。定义设f(x)是〔a,b〕上的可测函数,S是〔a,b〕上的可测函数族,称S测度逼近f(x)是指出任意ε〉0和δ〉0,存在g(x)∈S,满足 mE(|f(x)-g(x)|≥ε)〈δ,其中E(|f(x)-g(x)|≥ε)={x|x∈〔a,b〕,|f(x)-g(x)|≥ε},“m”为集合的测度符号。  相似文献   

15.
本文将证明牛顿—莱布尼兹公式对于 schwarz 导数亦成立。设函数 f(x)定义在[a,b]上,若对于 x∈(a、b)(?)(f(x+h)-f(x-h))/(2h)存在,则该极限值为 f(x)在点 x 的 schwarz 导数。记作 f~s(x)引理1 设 f(x)是[a,b]上的连续函数,f~s(x)在(a、b)上存在,若 f(b)>(<)f(a),则存在点,c∈(a,b),使得:f~s(c)≥0(≤0)引理2 设 f(x)在[a,b]上连续,f~s(x)在(a,b)上存在,f(a)=f(b)=0,则存在点 x_1,a相似文献   

16.
本文证明了定义函数的乘积ε(x)δ(x)sinkx=0,利用这个结果我们证明ψ=(1-c/2ε(x))sinkx是Schroedinger方程-d^2/dx^2 cδ(x)ψ=Eψ的解。  相似文献   

17.
设有界函数f(x)在(a,b)上Riemann可积,对f(x)的不连续点,Φ(x)=integral from n=a to x(t)dt的可导性如何呢?本文指出:设X_0是f(x)在(a,b)上的不连续点,f(x)在(a,b)上的连续点组成的集合为D、x→x_0存在,则φ(X_O)存在且等于X→X_0.但逆命题不成立。  相似文献   

18.
导函数连续性的条件分析——导数极限定理的随想   总被引:1,自引:0,他引:1  
一般情况下 ,从定义出发判断函数的连续性 ,需要判断函数f(x)在点x0 的极限值limx→x0f(x)是否等于函数值f(x0 ) ,而判断导函数f′(x)在点x0 的连续性只需讨论limx→x0f′(x)的存在性。  相似文献   

19.
设y=f(u),u=φ(x),u在x_0可微分;u_0=φ(x_0),y在u_0可微分,则复合函数y=f(φ(x))在x_0可微分,而且(1) dy/dx|_(x=x_0)=f′(u_0)·φ′(x_0)。这个复合函数求导数法则的证明,在通常的数学分析教科书上,有如下两种: 〔证法一〕给x从x_0起取增量△x(≠0),则相应地函数u从u_0起得增量△u,y从f(φ(x_0))起得增量△y。因为f′(u_0)存在,所以当△u≠0时,令α=△y/△u-f′(u_0),就有limα=0,而且 △u→0  相似文献   

20.
提出用α-多项式进行函数逼近的问题,首先给出广义的伯恩斯坦多项式,利用它证明了α-多项式逼近定理,即:对于闭区间[a,b]上的连续函数f(x),存在α-多项式序列{pn(x,α)},使{pn(x,α)}在[a,b]上一致收敛于f(x)。从理论上解决用α-多项式进行函数逼近的问题。最后用数值例子说明对于有些数据用α-多项式(α≠1)进行函数逼近效果会更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号