首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
TiO_2光催化降解活性艳兰KN-R的动力学研究   总被引:2,自引:2,他引:0  
以纳米二氧化钛为光催化剂,研究了溶液pH值,TiO2投加量,H2O2用量及染料起始浓度对光催化降解活性艳兰KN-R动力学的影响.结果表明,TiO2光催化降解活性艳兰KN-R的反应遵循准一级反应动力学方程,且表观反应速率常数随溶液pH值的升高及染料起始浓度的降低而增大;TiO2和H2O2的投加量均存在一个最佳值,在本实验条件下,它们分别为0.5 g.l-1和2.0×10-2mol.l-1,低于或超过该值都会导致降解速率的下降.  相似文献   

2.
采用小型光催化反应装置,以溶胶-凝胶法负载于玻璃纤维网上的固定膜TiO2为催化剂对布洛芬(IBP)进行光催化降解,分析了吸附、光解、IBP初始浓度、溶液初始pH和投加H2O2剂量对TiO2催化剂降解布洛芬的影响,并考察了IBP的矿化过程,对IBP降解中间产物进行定性分析.结果表明:吸附作用和在UV365下光解作用对降解布洛芬的影响不明显;IBP在较低浓度范围内,其降解呈伪一级反应,反应速率常数随初始浓度增大而减小;随着溶液初始pH的增大,IBP的光催化降解速率逐渐降低;H2O2投加剂量对IBP光催化降解影响显著,这是IBP在水中存在状态和TiO2界面电荷性质受到pH影响所致,为提高光催化降解布洛芬速率,较适宜的H2O2投加剂量为2.5 mg/L左右.光催化对IBP有较好的矿化作用.LC-MS分析表明,·OH攻击作用是IBP光催化降解的基本途径.  相似文献   

3.
采用自制的S/TiO2作为光催化剂,在可见光下进行光催化降解2-萘酚和还原Cr(Ⅵ)的实验.考察了S/TiO2投加量、2-萘酚初始浓度和pH值对2-萘酚降解光催化性能的影响及Cr(Ⅵ)~2-萘酚混合体系光催化反应的研究.结果表明:S/TiO2投加量为2.0 g/L,2-萘酚溶液初始浓度18.75 mg/L,pH值为6~7时2-萘酚光催化降解效果最好;混合体系中的2-萘酚的降解率及Cr(Ⅵ)还原率均较相应的单一体系高,Cr(Ⅵ)的还原与2-萘酚的氧化之间产生了协同效应.Cr(Ⅵ)和2-萘酚的光催化反应均为拟一级反应动力学.  相似文献   

4.
纳米TiO2光催化氧化苯甲酸   总被引:1,自引:0,他引:1  
采用DegussaP-25 TiO2悬浮体系,以紫外灯(λmax=254 nm)为光源,考察苯甲酸光催化氧化中溶液初始pH值、催化剂质量浓度、初始苯甲酸质量浓度、H2O2投加量对光催化氧化速率的影响,并对苯甲酸的光催化氧化过程进行了动力学分析.结果表明:苯甲酸的光催化氧化过程可采用准一级动力学模型;在pH=3.5时光催化氧化效果最佳,当催化剂质量浓度为0.05 g/L时,总有机碳去除率为87.2%;催化剂质量浓度大于0.1 g/L时,在反应初始阶段吸附作用为主要控制因素,但是随着反应的进行,传质和光源的利用率成为主要控制因素;随着苯甲酸质量浓度的增加,反应由一级向零级过渡;外加H2O2能够提高反应速率,其最佳投加量为1.5 mg/L.  相似文献   

5.
双氧水助光催化降解直接大红染料废水的研究   总被引:3,自引:0,他引:3  
利用溶胶-凝胶法制备二氧化钛薄膜,研究加入微量H2O2协助光催化降解直接大红废水的可行性。分别讨论不同氧化工艺、H2O2投加量和反应时间、pH值、废水的初始浓度对脱色率的影响.结果表明,pH值较低、H2O2投加量为3 mL/L、废水溶液初始浓度较低时有较好的降解效果.  相似文献   

6.
采用自制的S/Ti O2作为光催化剂,在可见光下进行光催化降解2-萘酚和还原Cr(VI)的实验。考察了S/Ti O2投加量、2-萘酚初始浓度和p H值对2-萘酚降解光催化性能的影响及Cr(VI)~2-萘酚混合体系光催化反应的研究。结果表明:S/Ti O2投加量为2.0 g/L,2-萘酚溶液初始浓度18.75 mg/L,p H值为6~7时2-萘酚光催化降解效果最好;混合体系中的2-萘酚的降解率及Cr(VI)还原率均较相应的单一体系高,Cr(VI)的还原与2-萘酚的氧化之间产生了协同效应。Cr(VI)和2-萘酚的光催化反应均为拟一级反应动力学。  相似文献   

7.
探讨了光催化氧化-固定化微生物组合工艺处理硝基甲苯类废水的可行性.考察了最佳光催化工艺条件:TiO2=0.1g/L,H2O2=0.1ml/L,pH=3,反应时间3h,废水可生化性.结果表明,光催化反应3h后,废水可生化性从0.04提高至0.3以上.光催化反应3h的出水采用固定化微生物法处理,生物反应器稳定运行40d,废水经反应器处理4h后,硝基甲苯类废水中2,6-DNT、4-MNT和COD的去除率分别为90%、90%和60%以上.借助SEM观察了固定化微生物在大孔载体上的表面形态.  相似文献   

8.
以市售商品TiO2为光催化剂,以SFBlue制衣染料溶液模拟实际印染废水,研究光照时间、TiO2投加量、染料溶液浓度、pH值、温度对UV/TiO2体系降解染料废液效果的影响和宏观动力学。结果表明,UV/TiO2对SFBlue染料废液具有良好的处理效果,而且在发生光催化降解的同时还伴随着光分解反应,光催化降解反应为表观二级反应,活化能50.1kJ·mol-1,指前因子4.47×105L.mg-1.min-1;光分解反应为表观一级反应,活化能14.8kJ·mol-1,指前因子1.67min-1。UV/TiO2体系降解染料废液受到光照时间、TiO2投加量、染料溶液浓度、pH值、温度等因素的影响,TiO2最佳投加量为1.2g.L-1,染料溶液初始pH值≤3时,TiO2对SFBlue染料具有强烈吸附作用。  相似文献   

9.
二氧化钛膜及其改性膜光催化降解亚甲基蓝的研究   总被引:7,自引:0,他引:7  
采用溶胶-凝胶法制得锐钛型二氧化钛薄膜,研究了亚甲基蓝在该膜上的光催化降解初始速率与溶液初始pH值、外加电子捕获剂H2O2和外加空穴捕获剂CH3OH的关系,结果表明:投加TiO2膜光催化氧化亚甲基蓝的初始反应速率为0.012min^-1大于未投加TiO2薄膜的光氧化初始反应速率0.007min^-1.当pH为12.9,H2O2和CH3OH加入量分别为8.4mmol/L,5.6mmol/L时初始反应速率最大,所制的膜随使用次数的增加活性变化不显著,加入Fe2O3和V2O5制得复合的半导体膜提高了反应活性。  相似文献   

10.
以弱酸性红RN染料为目标降解物,分析纳米TiO2对其光催化降解的机理.采用XRD表征自制纳米TiO2光催化剂的晶相结构.通过单因素实验,研究光催化剂投加量、染液初始pH值等因素变化对纳米TiO2光催化降解弱酸性红RN染液的影响.结果表明,纳米TiO2受光照激发在其表面生成了具有高活性和强氧化能力的羟基自由基(·OH),将弱酸性红RN染料催化降解为N2、H2O、CO2、Na2SO4等无害物质.采用溶胶凝胶法制备的纳米TiO2晶粒均为锐钛矿相,粒径大小为19.2nm.在300W金卤灯照射下,光催化反应240min时,0.25g纳米TiO2对100mL质量浓度为5mg/L、pH=5的弱酸性红RN染料溶液的降解率达94.2%.  相似文献   

11.
 研究了不同浓度TiO2、O3、H2O2光催化氧化苯甲酸的过程.结果表明:苯甲酸在光催化臭氧-过氧化氢氧化(UV/TiO2/O3/H2O2)和光催化臭氧氧化(UV/TiO2/O3)过程的浓度去除率比单独光氧化(UV)、光催化氧化(UV/TiO2)、光催化过氧化氢氧化(UV/H2O2)过程明显增高.TiO2的最佳投加量为4.0 g/L,苯甲酸降解速度随着O3浓度增加而增大,低浓度的H2O2能促进苯甲酸氧化.动力学研究表明,苯甲酸降解过程遵循一级反应,苯甲酸在UV/TiO2/O3/H2O2作用下降解的速率常数是UV/TiO2/O3过程的1.47~6.29倍,是UV/TiO2过程的3.39~5.21倍.  相似文献   

12.
纳米Bi_2O_3/TiO_2光催化剂的制备及光催化活性评价   总被引:2,自引:1,他引:1  
在超声波作用下采用水解法制备Bi2O3/TiO2复合光催化剂,以紫外灯为光源,对有机染料进行光催化降解实验,考察Bi2O3/TiO2的光催化性能.结果表明:Bi2O3与TiO2复合拓宽了催化剂对光的吸收范围,提高了TiO2的光催化活性,掺杂量(Bi2O3)为0.25%(w)复合光催化剂催化活性最高.考察了催化剂投加量、染料初始浓度、溶液pH值等因素对罗丹明B降解效果的影响,降解反应遵从假一级动力学模型,测得反应速率常数为0.0574min-1.  相似文献   

13.
研究了超声波降解水中二甲苯的降解效果,详细探讨了反应容器及沸石、声强、超声时间、H2O2投加量、温度、pH值等因素对降解二甲苯的影响.实验结果表明:二甲苯初始质量浓度为27.6 mg/L,H2O2的质量浓度为1.68 g/L,温度为24±1 ℃时,经141.32 W/cm2声强辐射1 h,其降解率可达99.2%.  相似文献   

14.
采用液相还原法在制备Cu2O的前驱体中加入LDH/Fe3O4制备出LDH/Fe3O4@Cu2O复合材料,将其对盐酸四环素废水进行光催化降解,研究了催化剂的投加量、光照强度、pH值和共存离子对LDH/Fe3O4@Cu2O复合材料光催化性能的影响,分析了光催化过程中起主要作用的活性基团.结果表明,制备出的LDH/Fe3O4@Cu2O复合材料具有较好的光催化性能,与单纯Cu2O相比,复合材料能够提高光催化降解的速率和效果.光催化降解盐酸四环素的最佳条件:催化剂的投加量为0.1 g·L-1、光照强度为500 W、pH值为10,对50 mg·L-1盐酸四环素的降解效率达到95.2%.溶液中存在阴离子Cl-和HCO时会降低光催化效率,自由基抑制实验证实光催化过程中·O起主要作用.  相似文献   

15.
N-N二甲基乙酰胺(DMAC)是化纤废水的主要污染物,具有毒性大,生物难降解等特点.研究了磁芬顿法和芬顿法处理DMAC的效果,探讨了最佳处理条件及降解机理.结果表明:在FeSO4·7H2O的投加量为12g/L,H2O2的投加量为12mL/L,pH值为3.0,反应时间为60min的条件下,原水浓度为250mg/L的DMAC模拟废水处理实验中,磁芬顿法的COD去除率为82.1%,较未磁化提高18.5%.动力学研究表明,磁芬顿法和芬顿法降解COD符合一级反应,反应速率常数分别为0.029min-1和0.013min-1,磁场可加快芬顿反应速度.  相似文献   

16.
掺铜TiO_2光催化降解活性艳红X-3B的研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备掺铜TiO2光催化剂,以活性艳红X-3B溶液光催化降解反应为模型,研究各种因素对活性艳红X-3B光催化降解的影响.实验结果表明:适量的Cu2+掺杂可明显提高TiO2的活性,本实验中最佳量为0.5%.掺杂Cu2+的TiO2光催化剂最佳用量为1.5g/L,溶液pH为5左右,活性艳红X-3B溶液初始浓度为40mg/L,加入H2O21ml/L,40min左右活性艳红X-3B降解率可达到94.3%.  相似文献   

17.
纳米TiO2光催化降解DMF   总被引:2,自引:1,他引:1  
研究了纳米TiO2(P25)光催化降解DMF水溶液,考察了初始浓度、溶液pH值、空气、H2O2、O3对DMF降解率的影响.结果表明在低浓度范围内,光催化降解DMF遵循L-H方程,表观反应速率常数k=33.3mg/(L·min),吸附速率常数K=1.84×10-4L/mg,并通过静态吸附实验验证了P25表面对DMF的弱吸附特性,进而得出吸附过程是DMF光催化降解的控制步骤.pH值对DMF降解率影响较大,当pH值由11.0降为4.0时,DMF降解率由51.5%升高到71.0%.空气和H2O2的加入能够加速DMF的光催化降解,O3体系可以显著增强P25对DMF光催化降解效应,其降解率和降解效率分别是空气体系的1.5和2倍左右.  相似文献   

18.
以锐钛矿TiO2粉末为原料,采用水热法合成了Ti02纳米棒,并利用X射线粉末衍射仪(XRD)、透射电子显微镜TEM等手段对产品进行了表征.以甲基橙为模拟染料废水,TiO2纳米棒为催化剂,在紫外光照条件下考察TiO2纳米棒的投加量、甲基橙的初始浓度、光照时间、溶液pH值及重复使用次数对甲基橙光降解效率的影响。实验结果表明:TiO2纳米棒的投加质量浓度为0.2g/L,甲基橙初始浓度为10mg/L,pH为5~6;光催化反应3h后,甲基橙的降解率可达96.5%;TiO2纳米棒重复使用5次后,甲基橙的降解率仍然可达85.6%.  相似文献   

19.
含氮杂环化合物随着化工行业的发展不断进入环境中,增加了对生态环境的威胁.考察了UV/H2O2对化工废水中含氮杂环化合物2,6-二氯吡啶(2,6-DCLPY)的降解特征,降解过程中的2,6-DCLPY浓度通过紫外分光光度法测定;并对2,6-DCLPY降解反应的影响因素包括初始2,6-DCLPY浓度、H2O2浓度、pH和共存阴离子等进行了研究.结果表明:2,6-DCLPY在UV/H2O2体系下的降解符合准一级反应动力学,该体系中羟基自由基(·OH)是降解2,6-DCLPY的主要活性物质,UV起协同作用;随着H2O2用量的提高,2,6-DCLPY的降解效率也逐渐提高,当H2O2和2,6-DCLPY的投加摩尔比为37"1,pH为7.2时达到最高降解率77.3%.共存阴离子HCO-3和NO-3因能与·OH直接发生反应,对降解反应有显著的抑制作用.吡啶环上存在氨基等给电子基团有利于吡啶类污染物的降解,而氯等吸电子基团会抑制吡啶类污染物的降解.  相似文献   

20.
TiO2光催化降解有机磷农药的机理和应用研究   总被引:2,自引:0,他引:2  
对TiO2光催化剂的用量、反应液的起始浓度和pH值、H2O2的浓度等因素对光催化的影响及机理做了探讨和研究.研究表明,TiO2光催化降解有机磷农药,光催化效率与光照时间、有机磷农药浓度、不同酸溶液及其pH值等因素有关;外加H2O2或Fe3 离子可以影响催化剂的降解效率.同时,还选用透明玻璃片为载体,以溶胶-凝胶法自制了TiO2薄膜催化剂,并应用于有机磷农药的降解,取得了十分理想的降解效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号