首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
借助于某种换位子等式,给出SZC环的定义,研究SZC环的一些性质.主要证明了如下结果:①SZC环是CN环和ZC环;②R为强正则环当且仅当R为SZC环和正则环;③设R为SZC环且C(R)≠R,若R为素环,则R为交换环;④R为Abel环当且仅当对任意e∈E(R),任意x∈R,存在n=n(e,x)>1,z=ze,x∈R,使得ex-xe=(ex-xe)nz;⑤R为CN环当且仅当对任意x∈N(R),任意y∈R,存在n=n(x,y)>1,z=zx,y∈N(R),使得xy-yx=(xy-yx)nz.  相似文献   

2.
给出下列交换性定理1)设R为半质环,若对R中任意元x,y,存在整数m=m(y)≥0,n=n(y)≥0,m≥n,fx,y(t)∈t2Z[t]使得fx,y(xmy)-yxn∈Z(R)或fx,y(yxm)-yxn∈Z(R),则R为交换环.2)设R为k the半单纯环,若对R中任意x,y,存在整数m=m(x,y)≥n=n(x,y)≥0,多项式fx,y(t)∈t2Z[t]使得fx,y(xmy)-yxn∈Z(R)或fx,y(yxm)-yxn∈Z(R),则R为交换环.  相似文献   

3.
给出了Jacobson半单纯环的一个交换性定理,推广了文献[1],[2],[3]中的结果.证明了下面定理,设R为Jacobson半单纯环,Z(R)为其中心,k∈Z^ ,2,3不整除k.如果对每一y∈R有依赖于y的非负整数δ=δ(y),δ=m,n,s,t及fy(t)∈t^2Z[t]使A↓x∈R有:[x^k,x^s(y)yx^t(y)-x^m(y)fy(y)x^n(y)]∈Z(R),那么R为交换环.  相似文献   

4.
讨论了带有非零导子的结合环的交换性,证明了:定理1 R是特征非2的素环,f,g为R的两个非零导子,若有自然数n使得x~nfg(y)-fg(y)x~n∈Z(R) (?)x,y∈R则R可换.定理3 R为无零因子环,d为R的非零导子,若(?)x∈R,d~n_x∈Z(R)且R的特征不是(n+1)1的因子,则R可换.定理5 若素环R的特征不为2,U为R的非零Lie理想,且(?)u∈U有udu+duu∈Z(R),则u~2∈Z(R)且当u~2∈U时,U(?)Z(R).  相似文献   

5.
半质环的两个交换性定理   总被引:2,自引:2,他引:0  
证明了满足下列条件的半质环是交换环: 1)若对x,y,z∈R,存在整数m=m(x,z)>1,n=n(x,z)>1,使得[(xmy)n-xym,z]∈Z(R)则R为交换环.2)若对x,y,z∈R,存在整数m=m(y,z)>1,n=n(y,z)>1,使得[(xmy)n+xmy,z]∈Z(R)则R为交换环.  相似文献   

6.
本文证明了如下定理:定理1 环R有左单位元,N为R的幂零集元合,(?)x,y∈R,若x≡y((?)od N)就导致x,y与N中元可换或x~k=y~k,x~(k+1)=y~(k+1),其中k=k(x,y)>2,则N为R的理想;且当R/N的每一子环都幂等时,R为交换环.定理2 环R有左单位元且为2-扭自由,N为R的暴零元集合.若V~x,y∈R,x≡y(mod N)就导致x,y与N中元可换或x~k=y~k,x~(k+1)=y~(k+1),k=k(x,y)>2;或x~2=y~2,则N为R的理想,且当R/N的每一子环幂等时,R为交换环.  相似文献   

7.
环的两个交换性定理   总被引:1,自引:1,他引:0  
证明了满足下列条件的环是交换环1)设R为半质环,若对R中任意元x,y,存在整数m=m(y)>1,n=n(x,y)>1,使得(xmy)n-yxm∈Z(R)则R为交换环.2)设R为kothe半单环,若对R中任意元x,y,存在整数m=m(y)>1,n=n(x,y)>1,使得(xmy)n-yxm∈Z(R)则R为交换环.  相似文献   

8.
讨论元素满足两个以上多项式关系之一的半素环的交换性,证明了:定理1 R为半素环,(?)x,y∈R,若x,y满足如下3个关系式之一,则R为交换环:(i)(xy)~m-(xy)~(m_1)(yx)~(m_2)∈Z(R);(ii)(xy)~5-(yx)~1∈Z(R);(iii)(xy)~(k_1)(yx)~(k_2)-(yx)~(k_2)(xy)~(k_1)∈Z(R).其中m,m_i,k_i,s及t与x,y有关且m_1+m_2,t,k_1+k_2为有界自然数.定理2 R为半素环,若R满足下述四个条件之一,则R可换:(1)(?)x,y∈R,x~(2m)y~(2n)-x~my~(2n)x~m∈Z(R)或x~sy~t-y~tx~s∈Z(R);(2)(?)x,y∈R,x~(2m)y~(2n)-y~nx~(2m)y~n∈Z(R)或x~sy~t-y~tx~s∈Z(R);(3)(?)x,y∈R,(yx)~n-yx~ny~(n-1)∈Z(R)或(xy)~n-x~ny~n∈Z(R);(4)(?)x,y∈R,(yx)~n-x~(n-1)y~nx∈Z(R)或(xy)~n-x~ny~n∈Z(R).其中m,n,s,t为自然数,而(1)及(2)中的m,n,s,t与x,y相关,(3)及(4)中n(>1)只与x(或y)有关.  相似文献   

9.
在本文中我们引入了弱幺正则环的概念,证明这类环是幺正则环和半局部环的自然推广.另外,我们还证明了下面两个结果:(1)环R是弱幺正则的当且仅当Mn(R)(n≥1)是弱幺正则环;(2)假设R是一个环且使得R/J(R)是正则环.那么R是弱正则环当且仅当对任意ax b=1存在v∈R和一个左可逆元u∈R使得au bv=1以及当且仅当对任意x∈R存在一个左可逆元u∈R以及y∈J(R)使得x y=xux.  相似文献   

10.
环的交换性条件   总被引:1,自引:0,他引:1  
设R是半质环,C是R的中心。本文证明,当R满足下述条件之一时为交换环: 1.对任意x,y∈R,均有(xy)~2 x~2y~2∈C; 2.对任意x,y∈R,均有(xy)~2 y~2x~2∈C; 3.有整数n>1,m>1,使对任意x,y∈R,均有[X~n,y)-[x,y~n]∈C,且R为(M~n-m)-扭自由的。 我们定义环R的m-超中心为T_m={r∈R|对任意x∈R,均有rx~m=x~mr}。本文证明,若R为半质环,则T_m即为R的中心。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号