首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
设H为Hilbert空间,N为H上的完备的子空间套,AlgN为相应的套代数,若线性映射δ:AlgN→AlgN满足,任给a,b∈AlgN,当ab=0时,有δ([a,b])=[δ(a),b]+[a,δ(b)],则存在r∈AlgN,使得任给a∈AlgN,有δ(a)=ra-ar+τ(a)I,其中线性映射τ:AlgN→C满足,任给a,b∈AlgN,当ab=0时,τ([a,b])=0。  相似文献   

2.
设T=Tri(A,M,B)为三角代数,δ:T→T是一个映射(没有可加性的假设).利用代数分解的方法证明了:如果对任意的A,B∈T,且A与B至少有一个是幂等元,有δ(AB)=δ(A)B+Aδ(B),则δ是一个可加导子.并得到了上三角矩阵代数和套代数上此类局部可导非线性映射的具体形式.  相似文献   

3.
设U=Tri(A,M,B)是三角代数,δ,τ为U→U上的两个映射(无可加性或线性假设).利用矩阵分块的方法证明了:如果对任意的a,b∈U,有δ([a,b])=[δ(a),b]+[a,τ(b)],则τ=σ+L,δ=θ+f,其中:σ:U→U是可加导子;L:U→Z(U)是模可加的中心值映射;θ:U→U是关于σ的可加广义导子;f:U→Z(U)是中心值映射,且f([a,b])=0.  相似文献   

4.
称一个线性映射δ:A→A为零点可导的,若满足A,B∈!且AB=0都有δ(A)B+Aδ(B)=0,设A是Banach空间X上的一个子代数,且A中一秩算子线性张的值域在X中是稠密的.证明了如果含有某些性质的代数A上的线性映射δ在零点可导,那么对任意的A∈A,都有δ(A)="(A)+A,其中"是导子,∈F.特别地,若δ(I)=0,那么δ是可加导子.作为应用,证明了这个结论对于Jsl代数和B(X)上的标准算子都是成立的.  相似文献   

5.
设R是包含非平凡幂等元且有单位元的素环, Q={T∈R: T2=0}且δ: R→R是一个映射(无可加假设). 用代数分解方法证明了: 如果对任意的A,B∈R且[A,B]B∈Q, 有δ(AB)=δ(A)B+Aδ(B), 则δ是一个可加导子, 其中[A,B]=AB-BA为Lie积.  相似文献   

6.
设L是特征为零的代数封闭域F上的有限维单李代数.如果f:L→L为可逆映射,且满足[f(x),f(y )]=[x,y],对任意的x,y∈L,则称f是L上保强交换性的非线性可逆映射.证明L上保强交换性的可逆映射只能是恒等映射或负恒等映射.若映射δ:L→L满足[δ(x),y]+ [x,δ(y)]=0,对任意的x,y∈L,则称δ为L上的非线性强积零导子.证明了单李代数L上非线性强积零导子只能是零映射.  相似文献   

7.
设L是特征为零的代数封闭域F上的有限维单李代数.如果f:L→L为可逆映射,且满足[f(x),f(y)]=[x,y],对任意的x,y∈L,则称f是L上保强交换性的非线性可逆映射.证明L上保强交换性的可逆映射只能是恒等映射或负恒等映射.若映射δ:L→L满足[δ(x),y]+[x,δ(y)]=0,对任意的x,y∈L,则称δ为L上的非线性强积零导子.证明了单李代数L上非线性强积零导子只能是零映射.  相似文献   

8.
设G是一个满足MN=0=NM的2-无挠的广义矩阵代数,Q={A∈G:A2=0},D={dn}n∈N是G上一列映射(没有可加性假设)。文章证明:若对任意n∈N,A,B,C∈G且ABC∈Q,有dn(ABC)=∑r+s+t=ndr(A)ds(B)dt(C),则D是一个可加的高阶导子。作为应用,在三角代数上得到了相同的结论。  相似文献   

9.
设R是包含非平凡幂等元且有单位元的素环, Q={T∈R: T2=0}且δ: R→R是一个映射(无可加假设). 用代数分解方法证明了: 如果对任意的A,B∈R且[A,B]B∈Q, 有δ(AB)=δ(A)B+Aδ(B), 则δ是一个可加导子, 其中[A,B]=AB-BA为Lie积.  相似文献   

10.
证明了含单位元C*代数上可加的广义*-Lie导子是一个保*的可加导子。研究了因子von Neumann代数上拟正规可导映射。设H是维数大于2的复可分Hilbert空间,M是作用在H上维数大于1的因子von Neu-mann代数。若Ф:M→M是线性拟正规可导映射,则存在数λ∈R和算子T∈M且T+T*=λI,以及线性映射h:M→CI,使得对任意A∈M,有Ф(A)=AT-TA+h(A),且h([A,A*])=0。  相似文献   

11.
本文研究了因子von Neumann代数M中套子代数algMβ上的广义内导子.证明了如果δ:algMβ→M是一个线性映射,且对任意A∈algMβ有δ(A)=XAY,其中X,Y∈M.那么δ是一个广义内导子当且仅当存在投影P∈β使得X=λP XP⊥,Y=μP⊥ PY,其中λ,μ∈C.并且证明了δ2=δδ是一个广义内导子的充分必要条件.  相似文献   

12.
设M是包含非平凡投影P的单位素*-环,若:M→M是非线性满射,且强保*-交换映射当且仅当存在常数λ∈C且λ=1和函数f:M→C,使得对任意A∈M,有(A)=λA+f(A)I。应用以上结论,刻画了因子von Neumann代数上的非线性满射强保*-交换。  相似文献   

13.
设A是Hilbert空间H上维数大于1的因子von Neumann代数. 利用代数分解的方法证明: 如果非线性映射: A →A满足对任意的[JP2]A,B,C∈A, 有(A·B·C)=(A)·B·C+[JP]A·(B)·C+A·B·(C), 则是可加的*-导子.  相似文献   

14.
令N为Banach空间X上的套,AlgN为相应的套代数。设δ:AlgN→AlgN是可加映射。证明了如果存在可加映射τ:AlgN→AlgN,使得映射δ满足条件δ(A2)=δ(A)A+Aτ(A)对任意A∈AlgN成立,并且套N中存在一个非平凡元在X中可补,则δ是可加广义Jordan导子,进而,δ是广义导子。  相似文献   

15.
设A为一代数,M为A-双模,线性映射,δ:A→M称为T-导子,是指对于任意,A,B∈A,使δ(AB)=δ(A)T(B)+T(A)δ(B)成立,该文研究了T-导子的性质,得出如下主要结论:(1)设A为标准算子代数,线性映射δ:A→A 满足δ(P)=δ(P)T(P)+T(P)δ(P),AP∈A,称为幂等元,则δ为T-导子;(2)设A是一个投影代数,M是一个BanachA一模,则A到M的任一范数连续的T-局部导子是T-导子。  相似文献   

16.
设m,n是任意非零整数,且满足(m+n)(m-n)≠0, M是实或复数域F上的Hilbert空间上的一个因子von Neumann代数.利用代数分解方法证明了M上满足2mφ(AB)+2nφ(BA)=mφ(A)B+mAφ(B)+nφ(B)A+nBφ(A)的非线性映射φ为可加中心化子,并刻画出具体形式φ:A→λA(λ∈F, A∈M).  相似文献   

17.
设β是因子von Neumann代数M中的任意一个套,algMβ是相应的套子代数,φ:algMβ→M是一个线性映射.主要证明了:如果妒在零点可导,那么存在导子δ:algMβ→M和λ∈C,使得对任意的A∈algMβ有φ(A)=δ(A)+λA.  相似文献   

18.
设U=Tri(A,M,B )是含单位元1的三角代数,1A、1B分别是A和B的单位元。对任意的A∈A, B∈B分别存在整数k1、k2,使得k11A-A, k21B-B在三角代数中可逆。利用代数分解的方法,证明了如果{φn}n∈N:U→U是一列线性映射满足对任意的U,V∈U且UV=VU=1,有φn([U,V]ξ)=∑i+j=nφi(U)φj(V)-ξφi(V)φj(U)(ξ≠0,1),则{φn}n∈N是U上的高阶导子,其中φ0=id0是恒等映射,[U,V]ξ=UV-ξVU。  相似文献   

19.
设U=Tri(A,M,B)是一个2-无扰的三角代数, {φn}n∈N是U上的一列线性映射. 用代数分解方法证明: 如果对任意n∈N, U,V∈U且U。V=0, 并得到套代数上Jordan零点高阶ξ-Lie可导映射的具体形式.  相似文献   

20.
设m和n是任意固定的非零整数,且(m+n)(m-n)≠0,M是一个因子von Neumann代数,δ是M上的一个映射(没有可加性或连续性假设).用矩阵分块方法证明了:若对任意的A,B∈M,有mδ(AB)+nδ(BA)=mδ(A)B+mAδ(B)+nδ(B)A+nBδ(A),则δ是一个可加导子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号