首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Patterning organic single-crystal transistor arrays   总被引:1,自引:0,他引:1  
Briseno AL  Mannsfeld SC  Ling MM  Liu S  Tseng RJ  Reese C  Roberts ME  Yang Y  Wudl F  Bao Z 《Nature》2006,444(7121):913-917
Field-effect transistors made of organic single crystals are ideal for studying the charge transport characteristics of organic semiconductor materials. Their outstanding device performance, relative to that of transistors made of organic thin films, makes them also attractive candidates for electronic applications such as active matrix displays and sensor arrays. These applications require minimal cross-talk between neighbouring devices. In the case of thin film systems, simple patterning of the active semiconductor layer minimizes cross-talk. But when using organic single crystals, the only approach currently available for creating arrays of separate devices is manual selection and placing of individual crystals-a process prohibitive for producing devices at high density and with reasonable throughput. In contrast, inorganic crystals have been grown in extended arrays, and efficient and large-area fabrication of silicon crystalline islands with high mobilities for electronic applications has been reported. Here we describe a method for effectively fabricating large arrays of single crystals of a wide range of organic semiconductor materials directly onto transistor source-drain electrodes. We find that film domains of octadecyltriethoxysilane microcontact-printed onto either clean Si/SiO(2) surfaces or flexible plastic provide control over the nucleation of vapour-grown organic single crystals. This allows us to fabricate large arrays of high-performance organic single-crystal field-effect transistors with mobilities as high as 2.4 cm(2) V(-1) s(-1) and on/off ratios greater than 10(7), and devices on flexible substrates that retain their performance after significant bending. These results suggest that our fabrication approach constitutes a promising step that might ultimately allow us to utilize high-performance organic single-crystal field-effect transistors for large-area electronics applications.  相似文献   

2.
Duan X  Niu C  Sahi V  Chen J  Parce JW  Empedocles S  Goldman JL 《Nature》2003,425(6955):274-278
Thin-film transistors (TFTs) are the fundamental building blocks for the rapidly growing field of macroelectronics. The use of plastic substrates is also increasing in importance owing to their light weight, flexibility, shock resistance and low cost. Current polycrystalline-Si TFT technology is difficult to implement on plastics because of the high process temperatures required. Amorphous-Si and organic semiconductor TFTs, which can be processed at lower temperatures, but are limited by poor carrier mobility. As a result, applications that require even modest computation, control or communication functions on plastics cannot be addressed by existing TFT technology. Alternative semiconductor materials that could form TFTs with performance comparable to or better than polycrystalline or single-crystal Si, and which can be processed at low temperatures over large-area plastic substrates, should not only improve the existing technologies, but also enable new applications in flexible, wearable and disposable electronics. Here we report the fabrication of TFTs using oriented Si nanowire thin films or CdS nanoribbons as semiconducting channels. We show that high-performance TFTs can be produced on various substrates, including plastics, using a low-temperature assembly process. Our approach is general to a broad range of materials including high-mobility materials (such as InAs or InP).  相似文献   

3.
Gudiksen MS  Lauhon LJ  Wang J  Smith DC  Lieber CM 《Nature》2002,415(6872):617-620
The assembly of semiconductor nanowires and carbon nanotubes into nanoscale devices and circuits could enable diverse applications in nanoelectronics and photonics. Individual semiconducting nanowires have already been configured as field-effect transistors, photodetectors and bio/chemical sensors. More sophisticated light-emitting diodes (LEDs) and complementary and diode logic devices have been realized using both n- and p-type semiconducting nanowires or nanotubes. The n- and p-type materials have been incorporated in these latter devices either by crossing p- and n-type nanowires or by lithographically defining distinct p- and n-type regions in nanotubes, although both strategies limit device complexity. In the planar semiconductor industry, intricate n- and p-type and more generally compositionally modulated (that is, superlattice) structures are used to enable versatile electronic and photonic functions. Here we demonstrate the synthesis of semiconductor nanowire superlattices from group III-V and group IV materials. (The superlattices are created within the nanowires by repeated modulation of the vapour-phase semiconductor reactants during growth of the wires.) Compositionally modulated superlattices consisting of 2 to 21 layers of GaAs and GaP have been prepared. Furthermore, n-Si/p-Si and n-InP/p-InP modulation doped nanowires have been synthesized. Single-nanowire photoluminescence, electrical transport and electroluminescence measurements show the unique photonic and electronic properties of these nanowire superlattices, and suggest potential applications ranging from nano-barcodes to polarized nanoscale LEDs.  相似文献   

4.
Ultralow-power organic complementary circuits   总被引:1,自引:0,他引:1  
Klauk H  Zschieschang U  Pflaum J  Halik M 《Nature》2007,445(7129):745-748
The prospect of using low-temperature processable organic semiconductors to implement transistors, circuits, displays and sensors on arbitrary substrates, such as glass or plastics, offers enormous potential for a wide range of electronic products. Of particular interest are portable devices that can be powered by small batteries or by near-field radio-frequency coupling. The main problem with existing approaches is the large power consumption of conventional organic circuits, which makes battery-powered applications problematic, if not impossible. Here we demonstrate an organic circuit with very low power consumption that uses a self-assembled monolayer gate dielectric and two different air-stable molecular semiconductors (pentacene and hexadecafluorocopperphthalocyanine, F16CuPc). The monolayer dielectric is grown on patterned metal gates at room temperature and is optimized to provide a large gate capacitance and low gate leakage currents. By combining low-voltage p-channel and n-channel organic thin-film transistors in a complementary circuit design, the static currents are reduced to below 100 pA per logic gate. We have fabricated complementary inverters, NAND gates, and ring oscillators that operate with supply voltages between 1.5 and 3 V and have a static power consumption of less than 1 nW per logic gate. These organic circuits are thus well suited for battery-powered systems such as portable display devices and large-surface sensor networks as well as for radio-frequency identification tags with extended operating range.  相似文献   

5.
Programmable nanowire circuits for nanoprocessors   总被引:1,自引:0,他引:1  
Yan H  Choe HS  Nam S  Hu Y  Das S  Klemic JF  Ellenbogen JC  Lieber CM 《Nature》2011,470(7333):240-244
A nanoprocessor constructed from intrinsically nanometre-scale building blocks is an essential component for controlling memory, nanosensors and other functions proposed for nanosystems assembled from the bottom up. Important steps towards this goal over the past fifteen years include the realization of simple logic gates with individually assembled semiconductor nanowires and carbon nanotubes, but with only 16 devices or fewer and a single function for each circuit. Recently, logic circuits also have been demonstrated that use two or three elements of a one-dimensional memristor array, although such passive devices without gain are difficult to cascade. These circuits fall short of the requirements for a scalable, multifunctional nanoprocessor owing to challenges in materials, assembly and architecture on the nanoscale. Here we describe the design, fabrication and use of programmable and scalable logic tiles for nanoprocessors that surmount these hurdles. The tiles were built from programmable, non-volatile nanowire transistor arrays. Ge/Si core/shell nanowires coupled to designed dielectric shells yielded single-nanowire, non-volatile field-effect transistors (FETs) with uniform, programmable threshold voltages and the capability to drive cascaded elements. We developed an architecture to integrate the programmable nanowire FETs and define a logic tile consisting of two interconnected arrays with 496 functional configurable FET nodes in an area of ~960 μm(2). The logic tile was programmed and operated first as a full adder with a maximal voltage gain of ten and input-output voltage matching. Then we showed that the same logic tile can be reprogrammed and used to demonstrate full-subtractor, multiplexer, demultiplexer and clocked D-latch functions. These results represent a significant advance in the complexity and functionality of nanoelectronic circuits built from the bottom up with a tiled architecture that could be cascaded to realize fully integrated nanoprocessors with computing, memory and addressing capabilities.  相似文献   

6.
YH Kim  JS Heo  TH Kim  S Park  MH Yoon  J Kim  MS Oh  GR Yi  YY Noh  SK Park 《Nature》2012,489(7414):128-132
Amorphous metal-oxide semiconductors have emerged as potential replacements for organic and silicon materials in thin-film electronics. The high carrier mobility in the amorphous state, and excellent large-area uniformity, have extended their applications to active-matrix electronics, including displays, sensor arrays and X-ray detectors. Moreover, their solution processability and optical transparency have opened new horizons for low-cost printable and transparent electronics on plastic substrates. But metal-oxide formation by the sol-gel route requires an annealing step at relatively high temperature, which has prevented the incorporation of these materials with the polymer substrates used in high-performance flexible electronics. Here we report a general method for forming high-performance and operationally stable metal-oxide semiconductors at room temperature, by deep-ultraviolet photochemical activation of sol-gel films. Deep-ultraviolet irradiation induces efficient condensation and densification of oxide semiconducting films by photochemical activation at low temperature. This photochemical activation is applicable to numerous metal-oxide semiconductors, and the performance (in terms of transistor mobility and operational stability) of thin-film transistors fabricated by this route compares favourably with that of thin-film transistors based on thermally annealed materials. The field-effect mobilities of the photo-activated metal-oxide semiconductors are as high as 14 and 7?cm(2)?V(-1)?s(-1) (with an Al(2)O(3) gate insulator) on glass and polymer substrates, respectively; and seven-stage ring oscillators fabricated on polymer substrates operate with an oscillation frequency of more than 340?kHz, corresponding to a propagation delay of less than 210?nanoseconds per stage.  相似文献   

7.
Nanotechnology: high-speed integrated nanowire circuits   总被引:1,自引:0,他引:1  
Macroelectronic circuits made on substrates of glass or plastic could one day make computing devices ubiquitous owing to their light weight, flexibility and low cost. But these substrates deform at high temperatures so, until now, only semiconductors such as organics and amorphous silicon could be used, leading to poor performance. Here we present the use of low-temperature processes to integrate high-performance multi-nanowire transistors into logical inverters and fast ring oscillators on glass substrates. As well as potentially enabling powerful electronics to permeate all aspects of modern life, this advance could find application in devices such as low-cost radio-frequency tags and fully integrated high-refresh-rate displays.  相似文献   

8.
Nomura K  Ohta H  Takagi A  Kamiya T  Hirano M  Hosono H 《Nature》2004,432(7016):488-492
Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H) and organic semiconductors have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material--namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)--for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V(-1) s(-1), which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6-9 cm2 V(-1) s(-1), and device characteristics are stable during repetitive bending of the TTFT sheet.  相似文献   

9.
一种大容量IGBT的驱动和快速保护方法   总被引:2,自引:0,他引:2  
提出的大容量绝缘栅双极型晶体管(IGBT)器件的驱动和快速保护方法能满足各种容量的IGBT器件和功率场效应晶体管(MOSFET)器件对驱动和短路保护的要求。介绍了驱动电路和快速保护电路的原理,及保护电路响应时间的测量方法。给出了在不同基准电压下,模拟不同退饱和的集射电压下的保护响应时间。短路试验证明了保护电路的快速性。此驱动保护电路已用于由50A/600V IGBT模块构成的逆变器和由400A/600V IGBT模块构成的直流斩波器。工业运行结果表明保护方法响应时间快,抗干扰能力强。  相似文献   

10.
Crone B  Dodabalapur A  Lin YY  Filas RW  Bao Z  LaDuca A  Sarpeshkar R  Katz HE  Li W 《Nature》2000,403(6769):521-523
Thin-film transistors based on molecular and polymeric organic materials have been proposed for a number of applications, such as displays and radio-frequency identification tags. The main factors motivating investigations of organic transistors are their lower cost and simpler packaging, relative to conventional inorganic electronics, and their compatibility with flexible substrates. In most digital circuitry, minimal power dissipation and stability of performance against transistor parameter variations are crucial. In silicon-based microelectronics, these are achieved through the use of complementary logic-which incorporates both p- and n-type transistors-and it is therefore reasonable to suppose that adoption of such an approach with organic semiconductors will similarly result in reduced power dissipation, improved noise margins and greater operational stability. Complementary inverters and ring oscillators have already been reported. Here we show that such an approach can realize much larger scales of integration (in the present case, up to 864 transistors per circuit) and operation speeds of approximately 1 kHz in clocked sequential complementary circuits.  相似文献   

11.
Low-voltage organic transistors with an amorphous molecular gate dielectric   总被引:1,自引:0,他引:1  
Organic thin film transistors (TFTs) are of interest for a variety of large-area electronic applications, such as displays, sensors and electronic barcodes. One of the key problems with existing organic TFTs is their large operating voltage, which often exceeds 20 V. This is due to poor capacitive coupling through relatively thick gate dielectric layers: these dielectrics are usually either inorganic oxides or nitrides, or insulating polymers, and are often thicker than 100 nm to minimize gate leakage currents. Here we demonstrate a manufacturing process for TFTs with a 2.5-nm-thick molecular self-assembled monolayer (SAM) gate dielectric and a high-mobility organic semiconductor (pentacene). These TFTs operate with supply voltages of less than 2 V, yet have gate currents that are lower than those of advanced silicon field-effect transistors with SiO2 dielectrics. These results should therefore increase the prospects of using organic TFTs in low-power applications (such as portable devices). Moreover, molecular SAMs may even be of interest for advanced silicon transistors where the continued reduction in dielectric thickness leads to ever greater gate leakage and power dissipation.  相似文献   

12.
Efficient organic photovoltaic diodes based on doped pentacene   总被引:2,自引:0,他引:2  
Schon JH  Kloc C  Bucher E  Batlogg B 《Nature》2000,403(6768):408-410
Recent work on solar cells based on interpenetrating polymer networks and solid-state dye-sensitized devices shows that efficient solar-energy conversion is possible using organic materials. Further, it has been demonstrated that the performance of photovoltaic devices based on small molecules can be effectively enhanced by doping the organic material with electron-accepting molecules. But as inorganic solar cells show much higher efficiencies, well above 15 per cent, the practical utility of organic-based cells will require their fabrication by lower-cost techniques, ideally on flexible substrates. Here we demonstrate efficiency enhancement by molecular doping in Schottky-type photovoltaic diodes based on pentacene--an organic semiconductor that has received much attention as a promising material for organic thin-film transistors, but relatively little attention for use in photovoltaic devices. The incorporation of the dopant improves the internal quantum efficiency by more than five orders of magnitude and yields an external energy conversion efficiency as high as 2.4 per cent for a standard solar spectrum. Thin-film devices based on doped pentacene therefore appear promising for the production of efficient 'plastic' solar cells.  相似文献   

13.
Pentacene for p-channel organic field effect transistors(OTFTs) and perfluoropentacene for n-channel OTFTs have attracted strong attentions to be used as CMOS type organic semiconductor materials for flexible organic displays.n-channel OTFTs with different gate insulators of polyimide(PI) and SiO_2 and perfluoropentacene as a semiconductor layer were fabricated,and their instability of the transistor characteristics measured in air,vacuum and oxygen was investigated.The results show that both of the tran...  相似文献   

14.
本文利用集成电路W7812、W7912、W117、W137、μA741和三极管、二极管、稳压管等元器件,研制模拟电子技术学习机  相似文献   

15.
Duan X  Huang Y  Cui Y  Wang J  Lieber CM 《Nature》2001,409(6816):66-69
Nanowires and nanotubes carry charge and excitons efficiently, and are therefore potentially ideal building blocks for nanoscale electronics and optoelectronics. Carbon nanotubes have already been exploited in devices such as field-effect and single-electron transistors, but the practical utility of nanotube components for building electronic circuits is limited, as it is not yet possible to selectively grow semiconducting or metallic nanotubes. Here we report the assembly of functional nanoscale devices from indium phosphide nanowires, the electrical properties of which are controlled by selective doping. Gate-voltage-dependent transport measurements demonstrate that the nanowires can be predictably synthesized as either n- or p-type. These doped nanowires function as nanoscale field-effect transistors, and can be assembled into crossed-wire p-n junctions that exhibit rectifying behaviour. Significantly, the p-n junctions emit light strongly and are perhaps the smallest light-emitting diodes that have yet been made. Finally, we show that electric-field-directed assembly can be used to create highly integrated device arrays from nanowire building blocks.  相似文献   

16.
The use of solution processes-as opposed to conventional vacuum processes and vapour-phase deposition-for the fabrication of electronic devices has received considerable attention for a wide range of applications, with a view to reducing processing costs. In particular, the ability to print semiconductor devices using liquid-phase materials could prove essential for some envisaged applications, such as large-area flexible displays. Recent research in this area has largely been focused on organic semiconductors, some of which have mobilities comparable to that of amorphous silicon (a-Si); but issues of reliability remain. Solution processing of metal chalcogenide semiconductors to fabricate stable and high-performance transistors has also been reported. This class of materials is being explored as a possible substitute for silicon, given the complex and expensive manufacturing processes required to fabricate devices from the latter. However, if high-quality silicon films could be prepared by a solution process, this situation might change drastically. Here we demonstrate the solution processing of silicon thin-film transistors (TFTs) using a silane-based liquid precursor. Using this precursor, we have prepared polycrystalline silicon (poly-Si) films by both spin-coating and ink-jet printing, from which we fabricate TFTs with mobilities of 108 cm2 V(-1) s(-1) and 6.5 cm2 V(-1) s(-1), respectively. Although the processing conditions have yet to be optimized, these mobilities are already greater than those that have been achieved in solution-processed organic TFTs, and they exceed those of a-Si TFTs (< or = 1 cm2 V(-1) s(-1)).  相似文献   

17.
Chua LL  Zaumseil J  Chang JF  Ou EC  Ho PK  Sirringhaus H  Friend RH 《Nature》2005,434(7030):194-199
Organic semiconductors have been the subject of active research for over a decade now, with applications emerging in light-emitting displays and printable electronic circuits. One characteristic feature of these materials is the strong trapping of electrons but not holes: organic field-effect transistors (FETs) typically show p-type, but not n-type, conduction even with the appropriate low-work-function electrodes, except for a few special high-electron-affinity or low-bandgap organic semiconductors. Here we demonstrate that the use of an appropriate hydroxyl-free gate dielectric--such as a divinyltetramethylsiloxane-bis(benzocyclobutene) derivative (BCB; ref. 6)--can yield n-channel FET conduction in most conjugated polymers. The FET electron mobilities thus obtained reveal that electrons are considerably more mobile in these materials than previously thought. Electron mobilities of the order of 10(-3) to 10(-2) cm(2) V(-1) s(-1) have been measured in a number of polyfluorene copolymers and in a dialkyl-substituted poly(p-phenylenevinylene), all in the unaligned state. We further show that the reason why n-type behaviour has previously been so elusive is the trapping of electrons at the semiconductor-dielectric interface by hydroxyl groups, present in the form of silanols in the case of the commonly used SiO2 dielectric. These findings should therefore open up new opportunities for organic complementary metal-oxide semiconductor (CMOS) circuits, in which both p-type and n-type behaviours are harnessed.  相似文献   

18.
空间微重力环境为理解被地面重力场掩盖的晶体生长现象与规律、探索新的晶体制备工艺提供了独一无二的平台.我国学者在过去的30多年里进行了Ⅲ-Ⅴ族半导体晶体的空间生长研究,主要进展有:在微重力条件下得到了器件级的半绝缘GaAs,基于其制备的低噪声场效应晶体管和模拟开关集成电路性能明显超过地基器件;通过抑制熔体静压力的作用,实现了GaSb及InSb两种材料的非接触Bridgman生长,并大幅降低了材料的位错密度;深入研究了浮力对流、Marangoni对流及旋转磁场驱动的强制对流对组分微观偏析的影响规律;将垂直梯度凝固法应用于半导体合金生长,获得了组分均匀分布的GaInSb材料.本综述回顾了以上方面的研究进展,并对半导体空间材料科学的未来挑战进行了展望.  相似文献   

19.
Inkjet printing of single-crystal films   总被引:1,自引:0,他引:1  
The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science. Whether based on inorganic or organic materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. 'Printed electronics' is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials. However, because of the strong self-organizing tendency of the deposited materials, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid-air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C(8)-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4?cm(2)?V(-1)?s(-1). This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications.  相似文献   

20.
Javey A  Guo J  Wang Q  Lundstrom M  Dai H 《Nature》2003,424(6949):654-657
A common feature of the single-walled carbon-nanotube field-effect transistors fabricated to date has been the presence of a Schottky barrier at the nanotube--metal junctions. These energy barriers severely limit transistor conductance in the 'ON' state, and reduce the current delivery capability--a key determinant of device performance. Here we show that contacting semiconducting single-walled nanotubes by palladium, a noble metal with high work function and good wetting interactions with nanotubes, greatly reduces or eliminates the barriers for transport through the valence band of nanotubes. In situ modification of the electrode work function by hydrogen is carried out to shed light on the nature of the contacts. With Pd contacts, the 'ON' states of semiconducting nanotubes can behave like ohmically contacted ballistic metallic tubes, exhibiting room-temperature conductance near the ballistic transport limit of 4e(2)/h (refs 4-6), high current-carrying capability (approximately 25 micro A per tube), and Fabry-Perot interferences at low temperatures. Under high voltage operation, the current saturation appears to be set by backscattering of the charge carriers by optical phonons. High-performance ballistic nanotube field-effect transistors with zero or slightly negative Schottky barriers are thus realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号