首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ECAP条件下纯铜应变行为的等效应变规律及变形均匀性   总被引:1,自引:0,他引:1  
借助DEFORM-3D软件对圆型纯铜试样的ECAP变形行为进行有限元模拟,分析试样沿A、Ba 、Bc及C路径各经9道次变形后的等效应变规律及变形均匀性.结果表明,试样沿Bc路径挤压后等效应变值最接近理论应变值,沿A路径挤压后等效应变值偏离理论应变值最大;试样沿Bc路径挤压变形均匀性最好,Ba路径次之,沿C路径挤压变形均匀性较差,A路径最差.  相似文献   

2.
采用有限元软件Deform-3D对纯铜等径角挤压(equal channel angular pressing,简称ECAP)过程进行数值模拟,分析不同摩擦条件下载荷变化、等效应力和等效应变的分布情况,并对纯铜微观组织进行观察;同时模拟不同背压条件下材料的变形过程,分析塑性变形区的应变速率和等效应变分布情况.结果表明:随着摩擦因数增大,载荷峰值明显增大,但对载荷在变形过程中的变化趋势影响不大;等效应力和应变分布不均匀;试样的晶粒细化程度变大但分布均匀性下降;背施加压有利于减小塑性变形区,等效应变分布更加均匀,材料的变形均匀性提高.  相似文献   

3.
利用DEFORM-3D软件对纯铝和纯铜的ECAP过程进行模拟,得到不同挤压路径和模具内角时材料的载荷变化和等效应力、应变分布规律.结果表明:模具内角对材料变形所需载荷有显著作用;内角度数越大变形越易进行,但不利于变形量的累积,90°时材料受力较为均匀.不同挤压路径对材料的变形均匀性影响也不同,Bc路径能最有效地提高材料变形均匀性.  相似文献   

4.
工业纯铝等径弯曲通道变形过程的数值模拟   总被引:2,自引:0,他引:2  
等径弯曲通道变形(Equal ChannelAngularPressing简称ECAP)由于能直接制备块状超细晶材料而备受关注。通过对工业纯铝的ECAP变形过程进行有限元数值模拟,获得了变形过程的载荷变化规律和等效应变分布规律,并用坐标网格法对模拟结果进行了实验验证。在摩擦条件下,试样中区下表面的等效应变最大,至上表面处等效应变为最小。而在无摩擦理想情况下,其等效应变分布恰好相反,这可能是由于试样在ECAP变形过程中所受应力场和应变场的不同引起的。  相似文献   

5.
采用等通道转角挤压法(ECAP)制备超细晶纯铜,研究不同路径下纯铜组织演变与力学性能特征,分析了强塑性变形纯铜的断裂行为.结果表明:经过4道次变形,组织明显得到细化,Bc路径呈现出等轴状、卷曲状特征,平均晶粒尺寸在20~30μm左右,晶粒扭折、破碎较为严重,组织均匀性优于A路径变形组织.A路径和Bc路径变形得到的纯铜抗拉强度从221 MPa分别提高到430 MPa和410 MPa,拉伸断口呈现出颈缩现象及杯锥状断口特征,韧窝数量逐渐增多,分布均匀,组织均匀化程度得到改善.  相似文献   

6.
为了获得较细的晶粒,采用等通道角挤压(ECAP)变形的方法对5083铝合金按A和B两种方式进行变形;变形后两种样品用背散射电子衍射(EBSD)技术进行测定,获得了极图、反极图、取向差分布、晶粒尺寸等实验结果.结果表明:5083铝合金按A方式晶粒细化效果强于B方式,而B方式织构面积及织构强度都大于A路径.  相似文献   

7.
低碳钢等径弯曲通道变形数值模拟及组织分析   总被引:4,自引:0,他引:4  
对低碳钢等径弯曲通道变形进行了数值模拟,并分析了它的显微组织.通过有限元数值模拟,获得了低碳钢成形等径弯曲通道变形载荷的变化规律和等效应变分布规律.载荷模拟结果表明,摩擦因子越大,变形载荷也越大,当摩擦因子为0.408时,其成形载荷约为无摩擦时的2.1倍,载荷数值模拟与实验结果基本相吻合.此外,结合所揭示的等效应变分布特点,对一道次等径弯曲通道变形后试样横截面上的微观组织分布进行了分析,表明下表面处的材料晶粒细化程度比上表面处的大,因此这种分布特点与等效应变分布是相互一致的.  相似文献   

8.
分别对单晶和多晶原始纯铜进行等通道角挤压(ECAP)实验,研究Bc路径挤压后的组织特征和力学性能.结果表明,单晶和多晶铜在挤压过程中晶粒的细化方式明显不同:单晶铜在位错塞积后形成胞状结构,晶粒在位错塞积区发生断裂是其晶粒细化的主要原因;多晶铜在挤压中发生晶粒转动、晶界移动后造成晶粒被拉长并断裂,这是其晶粒细化的主要原因.力学性能对比发现,挤压中单晶铜的硬度和抗拉强度较多晶铜变化显著,认为挤压后单晶铜亚晶的定向排列是延伸率大幅度提高的主要原因.  相似文献   

9.
将热处理后的1050铝合金拉伸试样进行等温拉伸试验,获得真实应力-应变曲线,使用Deform-3D软件模拟1050铝合金微槽道的挤压成形过程。分析挤压速度、摩擦因数以及槽道宽高比这些关键工艺参数对材料等效应力-应变曲线分布的影响。结果表明,随着挤压速度和摩擦因数的增大,材料等效应力和应变均变大,变形不均匀性增大;随着槽道宽高比的变大,材料的等效应力和应变整体呈现上升趋势,微槽道板筋处出现了明显的应力集中现象,变形不均匀。根据模拟结果,选取最优参数进行1050铝合金微槽道挤压成形模拟试验,结果显示材料的流动均匀性更好,成形过程更加稳定,所得零件表面精度显著提高。  相似文献   

10.
针对粉末材料低塑性的特点,在室温条件下采用包套-等径角挤压工艺(PITS-ECAP)将纯铜粉末颗粒直接固结成高致密度块体细晶材料.结果表明,包套-等径角挤压工艺对粉末材料具有有效的致密和细化效果.4道次PITS-ECAP工艺变形后,试样X、Y、Z面均受到剧烈剪切作用,晶粒尺寸得到明显细化,显微组织呈细长条带流线状,且分布较为均匀;试样整体组织达到完全致密,平均显微硬度高达1 470 MPa.在PITSECAP工艺变形过程中,剧烈塑性剪切变形、较高静水压力和有效应变积累是保证粉末材料致密度大幅度提高以及显微组织有效细化的主要原因.  相似文献   

11.
压下率对42CrMo钢塑性成形与微结构演化的影响   总被引:3,自引:0,他引:3  
以热物理模拟试验为基础,得到42CrMo钢发生动态再结晶的数学模型.采用热力耦合的弹塑性有限元法对42CrMo钢圆柱试样在形变温度为1 050℃、应变速率为0.1 s-1的热变形过程进行数值模拟,讨论该热变形过程中压下率对42CrMo钢试样应力/应变分布情况与微结构演化规律的影响.模拟结果表明:在热变形过程中,试样各部位变形不均匀,试样心部的等效应变最大,且变形不均匀性随着压下率增加先增大,然后趋于稳定;试样各部位的等效应力分布不均匀,其最大值一般位于心部大变形区与自由变形区和粘着区的交界处,平均等效应力在压下率约为20%时达到峰值;由于变形的不均匀性导致了动态再结晶的不等时性,动态再结晶首先发生在心部大变形区,然后,向自由变形区和粘着区延伸,而且该条件下动态再结晶临界应变约为20%;试样心部等大变形区的动态再结晶晶粒较细,而粘着区等小变形区的动态再结晶晶粒较粗大,随着压下率的增大,动态再结晶晶粒继续长大.  相似文献   

12.
ECAP挤压L2纯铝的微观组织演化规律   总被引:10,自引:0,他引:10  
用等通道转角挤压对纯铝L2进行10道次挤压,结果表明:挤压1道次后,原来晶粒尺寸为1 mm的等轴晶沿剪切方向被拉长为条带状晶,在条带状晶粒之间出现被剪切破碎的细小亚晶粒.挤压2道次后,出现了少量等轴晶.挤压4道次后,晶粒取向性变得不太明显,小角度晶界的亚晶粒逐步向大角度晶界的等轴晶演化,晶粒细化到1 μm.随挤压道次的继续增加,晶粒大小不再变化,而形状向等轴状演化.挤压10道次后,合金组织由晶粒大小为1 μm的等轴晶组成.ECAP挤压中,纯剪切变形和应变量的双重作用导致晶粒细化.当晶粒尺寸小于临界尺寸时,剪切变形对晶粒的细化起主要作用;当达到临界尺寸后,应变量起主要作用,表现在使合金组织形貌向等轴晶转变.  相似文献   

13.
模具外接圆弧角对纯铝ECAE影响的有限元分析   总被引:5,自引:0,他引:5  
运用有限元方法对纯铝的等径弯角挤压(ECAE)过程进行了模拟计算,探讨了挤压通道外接圆弧角φ对挤压载荷及试样变形均匀度的影响.结果表明:随着φ角的增加,通道壁支反力的水平分量随之增大,有助于试样的变形流动,从而降低挤压载荷的大小;试样在剪切变形区所受到的滑动摩擦力也随φ角的增加而增大.同时,由于φ弧段的存在,试样底部产生弯曲变形而形成不均匀变形区。均使等效应变分布的不均匀度增加.  相似文献   

14.
设计了一种近等径转角挤压机制,利用有限元法对其进行模拟,并与同等条件下转角挤压模拟进行对比.结果表明:在不降低平均应变水平的前提下,近等径转角挤压可以在稳定变形区有效均化等效应变分布,并提高靠近圆弧段的等效应变,降低甚至消除转角挤压带来的等效应变层化效果;在不显著改变挤压力的前提下,等径转角挤压可以减少初始挤压时对模具的振动冲击,从而有利于模具保护.  相似文献   

15.
摩擦阻力对纯铝在等径弯角挤压过程中变形的影响   总被引:1,自引:0,他引:1  
室温下对纯铝试样进行了等径弯角挤压(ECAE),通过对挤压后纯铝试样的宏观变形及微观形貌分析,探讨了ECAE过程中模具内壁与试样之间的摩擦阻力对试样变形的影响,得到了滞变区比例与挤压位移之间的关系.结果表明:挤压过程中试样在模具通道内角点附近形成难变形区;在模具通道外角点形成变形死区;试样的芯部变形比较均匀,为明显的剪切变形;受摩擦阻力的影响,试样顶部和底部均出现了滞变区,该区域呈轴对称分布且沿试样长度方向逐渐向试样芯部扩展;滞变区比例随挤压的进行而增大.  相似文献   

16.
运用点迹跟踪法对Ti-6Al-4V合金进行600℃等温条件下的等径转角挤压有限元模拟,探讨其跟踪点的等效应力、等效应变及温度场,分析挤压速度和摩擦系数对挤压过程的影响.结果表明:试样越靠近模具内角点部位的应变率带越狭窄,变形时间越短,则应变率越高;靠近模具内角点或外弧线处的变形过程不稳定且出现振荡;在挤压过程中,因塑性变形热使得试样内部温度急剧升高,最高升幅达100℃以上,对挤压有利且至关重要;在挤压模具转角处,速度和摩擦热对试样的应力场和温度场的核心区域分布影响显著.  相似文献   

17.
不同路径等通道转角挤压镁合金的结构与力学性能   总被引:17,自引:0,他引:17  
为了研究等通道转角挤压时不同工艺路径对镁合金微观结构及性能的影响 ,采用模角φ =12 0°的模具 ,以A ,BA,BC,C四种工艺路径对AZ31镁合金进行了等通道转角挤压 ,分析测试了室温下挤压试样的微观结构及性能 .结果表明 ,相比于A ,BA,C路径挤压 ,BC 路径挤压容易实现较多的挤压道次和变形量 ;多道次挤压后 ,镁合金的晶粒得到显著细化 ,力学性能也显著改善 ,但不同路径的影响不同 .当挤压 12道次时 ,BC,BA 路径挤压试样的屈服强度显著下降 ,延伸率大幅度提高 ;A ,C路径挤压试样的屈服强度变化较小 ,延伸率的提高幅度也小 .  相似文献   

18.
在室温下,使用半连续等通道挤压法对单块IF钢试样进行重复大变形实验,通过电子背散射衍射方法,对在此晶粒细化过程中的材料组织进行了分析讨论.结果表明,在不同挤压道次中组织变形主要发生在沿两通道连接的剪切面上,且材料由切应变产生塑性变形,挤压后的试样组织在横截面上应力保持一致;随着应变的增加,材料的组织细化不断加强;10道次后,最终的大角度晶界(HAB)占总数的90%左右,同时大角度晶界的间隙减少到1μm左右,试样的平均晶粒尺寸达到055μm左右.  相似文献   

19.
文章分析了厚板弯曲的应变沿板厚方向的分布状态,考虑了应变中心层区域处应力加载过程对于应变储能的影响,建立了厚板弯曲再结晶过程的模型,利用Monte Carlo方法模拟得到了变形材料的再结晶晶粒尺寸分布,结果表明,晶粒尺寸分布具有局部不均匀性,但在整个分布范围,再结晶晶粒尺寸分布仍然服从对数正态分布规律。所建立的再结晶模拟模型能够预测不同变形量状态下的再结晶退火显微组织。  相似文献   

20.
AP1000核电主管道材料为316LN,该钢种无法通过热处理细化晶粒,需在锻造过程中保证产品的晶粒度要求。该文研究了316LN钢单道次和多道次变形条件下的动态再结晶行为,获得316LN钢在锻造成形中的晶粒细化判据;提出了上平下V砧的改进砧形,对锻件采用大圆角V砧以及上下不等砧宽比进行拔长,采用数值模拟和物理模拟相结合的方法,研究了拔长过程应力应变分布规律,并确定合理的工艺参数,有效地提高锻件变形区域的等效应变及均匀分布,达到锻件变形均匀和晶粒细化的目的。该结果对核电主管道锻造工艺方案优化具有理论参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号