首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
基于线阵CCD的智能小车路径识别系统   总被引:2,自引:0,他引:2  
文章介绍了一种基于飞思卡尔HCS12单片机的智能车路径识别系统,该系统以CCD摄像头传感器作为检测装置,直接采集CCD输出的模拟信号,通过图像识别提取当前路径信息;与常规的光电传感器识别路径方案相比,使用摄像头传感器可以获取更多的路径信息,使智能车按任意给定的黑色引导线以较快的速度平稳地运行;实验证明该方法简便可靠,具有很好的前瞻性,能够满足智能车路径识别的需求.  相似文献   

2.
以第八届全国大学生飞思卡尔智能汽车比赛为背景,介绍了以飞思卡尔S12单片机作为核心控制单元,通过摄像头采集赛道信息,利用PID算法控制舵机的响应速度,闭环控制马达速度,实现智能车在专门赛道上自主循迹行驶.重点阐述了硬件和软件的实现方法.实践证明,该智能车设计方案有效、可行.  相似文献   

3.
基于MC9S128的摄像头导航智能车的设计与实现   总被引:1,自引:0,他引:1  
介绍了一种基于摄像头导航的智能车系统设计方法.该系统根据全国大学生飞思卡尔杯智能汽车大赛的设计要求,使用飞思卡尔16位单片机MC9S 128为核心控制单元,设计了传感器、电源、电机驱动、车速检测等硬件电路;利用PID和模糊控制相结合的方式,使智能车能够自动采集、分析引导线信息,控制舵机转向,实现智能车的自动寻迹.  相似文献   

4.
本文设计了以飞思卡尔单片机MC9S12X128为核心的智能车系统,包括传感器信息采集与处理、电机驱动、控制算法及控制策略等方面。采用激光传感器采集道路信息并反馈给单片机控制系统,通过软件进行相关分析处理,通过速度反馈和PID算法控制舵机转向和智能车速度。通过实际运行验证,本方法使智能车运行稳定、可靠,其平均速度达到2.6m/s,得到比较理想的效果。  相似文献   

5.
采用飞思卡尔单片机为控制核心,以陀螺仪、加速度计为传感器的姿态,感知系统调节运动姿态,提高两轮自平衡电动车的控制精度。该两轮自平衡电动车具有体型小巧、转弯灵活的特点,动力来源为蓄电池。  相似文献   

6.
设计了以飞思卡尔系列MC9S12XS128单片机为核心控制器,加速度计MMA7260、陀螺仪ENC03为角加速度和角度测量仪的两轮自平衡智能小车控制系统.该系统通过对测量出的小车倾斜角度及角加速度进行计算和处理,实现了两轮直立小车的自平衡及小车的速度控制、方向控制和基于轨道的变速控制.该智能小车在华南赛区飞思卡尔智能小车大赛电磁组获三等奖.  相似文献   

7.
季浚涛 《科技信息》2013,(34):252-253
本文分析和研究了两轮自平衡机器人的平衡控制,速度控制与方向控制等问题,并且加入超声波避障功能。针对两轮自平衡机器人的姿态控制建立数学模型和动力学方程进行分析,并讨论了相应的控制方法。整个系统采用飞思卡尔公司的MC9S12XS128单片机作为系统的主控芯片,负责对各项传感器的数据进行处理与运算,并显示与发送控制信息量,完成两轮自平衡机器人的姿态控制。  相似文献   

8.
自动循迹的两轮自平衡电磁智能车是一个非线性、强耦合、欠驱动的自不稳定一级倒立摆系统。针对该智能车特点,采用两轮自平衡智能车机械架构、主控板、驱动板等模块相结合设计了系统硬件;并利用互补滤波和卡尔曼滤波方式对姿态检测传感器检测到的信号进行处理、以控制智能车直立平衡;最后通过归一化处理将路径检测传感器获得的路径信息与直立平衡控制信号进行融合,在直立平衡基础上实现智能车方向的控制。实验表明,该智能车运行平稳、转向灵活、速度较快。  相似文献   

9.
基于模糊控制的智能车调速系统的设计   总被引:2,自引:0,他引:2  
设计了一种基于模糊参数自整定的模糊控制智能小车调速系统,该智能车调速系统核心控制单元采用飞思卡尔半导体公司的HCS12单片机。实验证明,该智能车调速系统能很好地满足小车在前进过程中对速度调节的快速响应和稳态误差小的要求,系统具有较好的动态性能和良好的鲁棒性。  相似文献   

10.
尚在飞  肖文健  毛琼 《科技信息》2012,(20):135-136
智能车的一项关键技术就是对周围环境的感知、分析能力,如何利用已有的传感器使智能车获得更多、更准确的信息成为越来越多的研究者的目标。本文以全国大学生"飞思卡尔"杯智能汽车竞赛为背景,以飞思卡尔半导体公司的MC9S12XS128单片机为核心,初步探讨了利用图像传感器获取道路信息的方法及实现手段,并创造性地运用模式识别中常用的霍夫变换来提取道路特征参数,为控制策略提供了可靠依据。  相似文献   

11.
一种基于光电传感的路径识别智能车   总被引:1,自引:1,他引:0  
介绍了一种基于红外激光管的快速路径识别智能车系统。系统采用Freescale 16位单片机MC9S12DG128做为核心控制器,并用光电传感器采集道路信息以使智能车行驶于既定道路上。通过计算讨论了舵机转臂长度的取值范围,解决了系统的滞后问题;还以偏距计时与当前速度相结合的方式制定出控制策略,使智能车系统能快速平稳地寻迹行驶。  相似文献   

12.
对摄像头采集的视频信号采用LM1881N视频同步信号分离芯片、微控制器MC9S12XS128MAL进行处理,以此构建智能车的实时图像处理系统;经"飞思卡尔"杯智能汽车竞赛的检验,车模能够顺利沿着指定线路运行,该方案稳定可行.  相似文献   

13.
介绍了一种基于Freescale公司的16位HCS12单片机的一种智能车控制系统,它采用黑白CMOS摄像头作为路径识别装置,通过图像识别提取路径信息.利用单片机产生PWM波,控制小车速度和转向,利用自制的速度传感器来获取小车当前速度,实现速度的闭环控制,增加小车的稳定性,较之常规的光电传感器识别路径方案,利用摄像头传感器可以获取更多的路径信息.测试结果表明,智能车能按任意给定的黑色引导线更能以较快的速度平稳地运行.  相似文献   

14.
本文给出了智能小车寻迹系统的软硬件方案设计和开发流程.采用飞思卡尔MC9S12XS128单片机作为智能小车控制芯片,设计了电源、电机驱动、激光传感器以及测速等模块,小车的速度、转向控制采用PID控制方法,测试结果表明,小车能够平稳实现寻迹功能.  相似文献   

15.
介绍了一种以OV6620数字摄像头为视觉传感器的自循迹智能车系统,详细阐述了视觉传感器有效信号的小范围黑线提取法,采用增量式数字PID控制算法,实现智能车调速。实验测试表明,本智能车系统具有良好的稳定性、快速性和前瞻性。.  相似文献   

16.
基于CCD的智能车导航系统研究   总被引:3,自引:0,他引:3  
目前智能车导航大多采用摄像机来获取路面信息,针对这一特点研究开发了基于CCD的导航模块.详细介绍了CCD视频信号的采集及处理方法.考虑到环境光线的变化会影响导航效果,提出了一种自适应动态阈值图像处理算法;该算法运算量小,能跟踪环境光线的变化.同时给出了系统抗干扰的处理方法,从而有效解决了因外界光线和赛道变化引起的智能车跑偏问题.通过系统实验和竞赛,证明了该导航系统具有良好的智能性和抗干扰能力,即此方案是有效的.  相似文献   

17.
针对目前智能车控制中,控制电路复杂以及控制芯片内部资源有限导致系统稳定性差等问题,提出了一种基于飞思卡尔Kinetis K60(简称K60)的智能车控制系统,并设计了系统硬件和软件。采用CMOS高速数字摄像头,简化了硬件电路,提高了系统实时性。最后,应用增量式PID控制算法完成舵机和电机控制,并通过实验调试确定了系统参数。  相似文献   

18.
智能车导航系统能自动寻迹,自主识别赛道且行驶准确稳定快速.在CodeWarrior开发环境中,采用C语言为设计软件,以Freescale 公司的MC9S12XS128B 单片机为控制芯片,外围控制电路及芯片驱动电路采用Protel 99SE为设计工具,由CMOS数字摄像头实现路径识别.仿真测试表明:本系统不仅能完成智能车对路径的识别功能,而且还具有很好的抗干扰能力,舵机转动快,电机控制稳定,具有良好的动态性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号