首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以重庆市沙坪坝区国控空气自动监测点为例,研究了细颗粒物(PM_(2.5))和可吸入颗粒物(PM_(10))污染现状和相关性.结果表明:颗粒物,尤其是细颗粒物(PM_(2.5)),是影响城市环境空气质量的主要污染因子,尤其是在春、冬季节易导致污染天气.大气扩散条件不佳,颗粒物质量浓度越高,细颗粒物(PM_(2.5))在可吸入颗粒物(PM_(10))中的比重也越高.细颗粒物(PM_(2.5))和可吸入颗粒物(PM_(10))具有较好的统计相关性,两者可能具有同源性,在环境空气污染中的变化规律相似,有可能遵循相同的迁移转化规律,可以进行协同治理.  相似文献   

2.
为研究郑州市PM_(10)和PM_(2.5)中多环芳烃(PAHs)的污染特征、来源及对健康的影响,于2013年4—12月在郑州大学采样点同步采集大气中的PM10和PM_(2.5).利用气相色谱-质谱联用仪对16种优先控制的PAHs进行定量分析,在此基础上运用Ba P毒性当量法对PAHs进行健康风险评估,并采用比值特征法揭示PAHs的可能来源.结果表明:郑州市大气颗粒物PM_(10)和PM_(2.5)中PAHs的单体质量浓度随季节变化特征明显,基本上都呈现冬季秋季春季夏季的趋势,其中4~6环化合物是PAHs的主要成分.郑州市四季大气颗粒物Ba P质量浓度均超过国家空气质量标准限制,存在潜在健康风险.经过比值特征法分析得出,郑州市大气颗粒物PM_(10)和PM_(2.5)中PAHs主要来自燃煤源、石油化工源、生物质燃烧源和机动车尾气源.  相似文献   

3.
利用2014-12-01—2015-11-30期间济南市空气质量的监测数据,运用Spearman秩相关分析法研究该市大气中细颗粒物PM_(2.5)、可吸入颗粒物PM_(10)、臭氧(O_3)的浓度与气象要素之间的相关性,其中气象要素选取温度、相对湿度和风速。结果表明:PM_(2.5)、PM_(10)及O_3与气象要素有显著的相关性,PM_(2.5)、PM_(10)的浓度与相对湿度呈正相关,与温度和风速呈负相关,O_3的浓度与温度和风速呈正相关,与相对湿度呈负相关;PM_(2.5)、PM_(10)浓度的日变化特征呈双峰双谷型,O_3浓度的日变化特征呈单峰单谷型;PM_(2.5)、PM_(10)的浓度在冬季、秋季、春季较大,在夏季较小;O_3的浓度在夏季最大,在冬季、秋季、春季相对较小,O_3已成为影响济南市夏季空气质量的首要污染物。  相似文献   

4.
目的研究重工业城市住宅在夏季开窗条件下,室外细颗粒物PM_(2.5)对室内空气品质的影响,数值模拟得到细颗粒物PM_(2.5)的质量浓度、速度、温度分布云图及粒子轨迹.方法通过采用气溶胶检测仪对室内外细颗粒物PM_(2.5)污染物质量浓度进行实测,使用SPSS软件对测试得到的细颗粒物PM_(2.5)质量浓度进行拟合,并运用FLUENT模拟软件对室内细颗粒物运移及分布情况进行模拟分析.结果位于重工业厂矿下风侧交通主干线一侧的A房间的室内与室外细颗粒物质量浓度的比值(I/O)小于1,受室外环境的影响较大;位于重工业厂矿下风侧小区内部的B房间的I/O大于1,说明受室内细颗粒物染物污的影响较大.并且两房间室内外细颗粒物具有较强的二次相关性,相关系数分别为0.920 77、0.941 11.结论室内PM_(2.5)质量浓度随室外细颗粒物质量浓度增加而升高.建立的室内外细颗粒物PM_(2.5)质量浓度相关性模型,可以分析室内外颗粒物浓度的变化特征.  相似文献   

5.
为研究吉安市城市PM_(10)及PM_(2.5)污染状况及时空分布特征,对吉安市2015年1月至2017年8月4个城市环境国家环境空气监测点的PM_(10)及PM_(2.5)监测数据进行统计分析。结果表明:吉安市城市空气质量表现出冬季PM_(10)浓度明显高于春、夏、秋季,PM_(2.5)/PM_(10)比值为0.632~0.851,PM_(10)及PM_(2.5)均呈现出W型变化规律,6:00达到最低值,11:00-12:00达到最高值;12:00-17:00浓度下降,17:00-23:00浓度再次回升,至23:00再次达到最高值。  相似文献   

6.
利用福州市国控监测站点2013年4月-2017年3月PM_(2.5)和PM_(10)质量浓度监测数据,对福州市不同粒径颗粒物污染特征进行研究.结果表明:时间变化方面,福州市空气质量整体较好,PM_(2.5)和PM_(10)浓度呈逐年下降趋势;PM_(2.5)、PM_(10)、PM_(2.5)/PM_(10)时间变化规律具有一致性:呈现冬季>春季>秋季>夏季的季节性特征;春季、夏季和秋季工作日浓度均高于周末的浓度,存在周末效应,冬季周末浓度则显著高于工作日浓度;日变化呈明显的双峰型变化趋势.空间变化方面,PM_(2.5)和PM_(10)浓度变化表现为工业区>市区>清洁区,清洁区PM_(2.5)/PM_(10)比值最高,其次是市区、工业区.相关分析结果表明:PM_(10)和PM_(2.5)存在显著相关性,且相关性明显受季节影响,夏季相关性最高.城市颗粒物与气态污染物(SO_2、NO_2)复合性较强.  相似文献   

7.
为分析2014年武清区PM_(2.5)污染的变化特征,运用统计学方法对全年PM_(2.5)常规日值监测数据进行分析,结果发现:2014年武清区大气环境中PM_(2.5)年均浓度为92μg/m3,PM_(2.5)日均浓度分布区间较宽,主要分布区间为20~120μg/m3,占样本总数的71.1%。PM_(2.5)污染呈现夏季及春末、秋初较轻,冬季污染严重的特征。PM_(2.5)浓度变化"周末效应"表现较为突出的季节是春季,夏季、秋季和冬季并未出现"周末效应"。研究结果有利于认识武清区PM_(2.5)污染的时间变化规律,从而正对性开展大气污染防控。  相似文献   

8.
为研究泉州市PM_(2.5)的时空变化特征及其影响因素,以期为有针对性地提出大气污染防治对策提供科学依据,选取2016年泉州市主城区的一城区点和一背景点大气监测站在线PM_(2.5)与污染气体数据,并同期采集PM_(2.5)样品进行综合分析.结果表明:1)城区点和背景点的年均PM_(2.5)质量浓度分别为(31.06±20.96)μg/m~3和(20.59±10.29)μg/m~3,低于我国空气质量标准中的年均质量浓度二级限值;2)PM_(2.5)的月均质量浓度在2—3月最高,其次为11月,这可能与污染物远源传输和不利天气条件的双重影响有关;3)冬、春季城区点PM_(2.5)同时受到一次排放污染物(如工业、机动车)和二次颗粒物的共同影响,而背景点PM_(2.5)则和较多的二次反应产物生成相关;4)夏、秋季两个站点PM_(2.5)和SO_2、NO_2的相关性明显提升,伴随着夏、秋季主导的西南风,验证了西南部工业区排放污染物传输的影响,此外,城区点PM_(2.5)质量浓度还受到粉尘的显著影响;5)硫氧化率和氮氧化率在冬、春季高于夏、秋季,这可能与上游区域污染物的远源传输相关.上述结果为全面掌握泉州市大气颗粒物的分布规律提供了基础数据.  相似文献   

9.
含氮化合物是大气细颗粒物(PM_(2.5))的重要组分,其中含氮有机物是含氮组分的重要存在形式,对陆地和水生生态系统影响较大.于2015年4月、7月和10月分别采集了金华市3个具有代表性站点的PM_(2.5)样品,分析了其中水溶性有机氮(water-soluble organic nitrogen,WSON)的质量浓度分布及季节变化特征.结果表明:金华市PM2.5中WSON质量浓度范围为0.06~6.90μg/m~3,平均1.90μg/m~3,对水溶性总氮(water-soluble total nitrogen,WSTN)的平均贡献率为31%.WSON的质量浓度分布具有明显的季节变化特征:秋季较高,夏季较低,而在夏季WSON对WSTN的贡献率最高.金华市PM_(2.5)中WSON的主要来源可能是含氮前体物在大气中的二次转化以及生物质燃烧活动.  相似文献   

10.
以重庆市沙坪坝区国控空气自动监测点为例,研究了细颗粒物(PM2.5)和可吸入颗粒物(PM10)污染现状和相关性.结果表明:颗粒物,尤其是细颗粒物(PM2.5),是影响城市环境空气质量的主要污染因子,尤其是在春、冬季节易导致污染天气.大气扩散条件不佳,颗粒物质量浓度越高,细颗粒物(PM2.5)在可吸入颗粒物(PM10)中的比重也越高.细颗粒物(PM2.5)和可吸入颗粒物(PM10)具有较好的统计相关性,两者可能具有同源性,在环境空气污染中的变化规律相似,有可能遵循相同的迁移转化规律,可以进行协同治理.  相似文献   

11.
利用晋安区五个空气质量监测站2017年的PM_(2.5)监测数据,对晋安区PM_(2.5)质量浓度变化特征进行分析,结果表明,晋安区PM_(2.5)浓度年均值和99.7%的日均值达到《环境空气质量标准》中的二级标准;PM_(2.5)浓度呈现明显的季节变化特征,春、冬季浓度值大于夏、秋季浓度值;而日变化趋势则呈现双峰形态;春、冬季PM_(2.5)/PM_(10)比值高于夏、秋季。  相似文献   

12.
为了解郑州市大气PM_(2.5)中正构烷烃的污染特征及来源,于2014年10月至2015年7月在郑州大学新校区采样点进行大气PM_(2.5)采集.采用气相色谱-质谱联用仪定量分析正构烷烃组分(C8~C40)的质量浓度,利用正构烷烃主峰碳、碳优指数、植物蜡含量以及正定矩阵因子分析(PMF)模型,识别正构烷烃的污染来源和解析污染源贡献率.结果表明:郑州市大气PM_(2.5)中正构烷烃质量浓度季节变化特征明显;秋、冬、春、夏季平均质量浓度分别为272±78、392±203、177±59、89±24 ng/m~3,呈现冬季秋季春季夏季的趋势;郑州市大气PM_(2.5)中正构烷烃主要来自煤炭等化石燃料燃烧和机动车尾气排放.  相似文献   

13.
为了解长三角典型县级市—–义乌市大气PM_(2.5)中烷烃的污染特征和来源,于2015年7月—2016年4月,使用TH-16A四通道采样器分别在义乌市北苑站点和江东站点采集大气PM_(2.5)样品,采用气相色谱-质谱联用仪对正构烷烃(C16~C34)和藿烷(C27~C32)进行定量分析.结果表明,北苑站点和江东站点大气PM_(2.5)中正构烷烃的年均浓度分别为78.0和80.4 ng/m3,站点之间没有明显差异;正构烷烃的浓度存在明显的冬季秋季春季夏季的季节性变化规律.正构烷烃的分布特征、主峰碳数(Cmax)、碳优势指数(carbon preference index, CPI)和植物蜡贡献率(Wax%)都表明化石燃料源是义乌市PM_(2.5)中正构烷烃的主要来源,植物蜡的平均贡献率约为20%.义乌市PM_(2.5)中藿烷的年均浓度在北苑站点和江东站点分别为5.5和4.6 ng/m3,藿烷浓度和正构烷烃浓度之间存在较强的正相关关系.依据藿烷同系物的分布特征,机动车排放是义乌市PM_(2.5)中有机质的重要来源.  相似文献   

14.
分析了福州市PM_(10)浓度的季节变化特征,并采用非参数分析方法对福州市PM_(10)在不同季节的浓度水平与各气象因素的相关性进行了研究。结果表明,不同季节影响PM_(10)浓度的气象因素各不相同。PM_(10)浓度与各气象因素的相关性分析表明:只有秋季PM_(10)浓度与气压有显著的相关性;春季和夏季PM_(10)浓度与气温有显著相关性,相关系数分别为0.319和0.249;四个季节中,冬季、春季PM_(10)浓度与相对湿度有显著的负相关;福州春季PM_(10)浓度与日照有显著的正相关;福州只有秋季PM_(10)浓度与风速的相关性较为显著,而其他三个季节均无显著相关性。  相似文献   

15.
长江三角洲在经济高速发展的同时,经历了较为严重的大气污染,受到了越来越多的关注.本研究于2009年4月(代表春季)、7月(代表夏季)和10月(代表秋季)在临安区域本底观测站使用低流量大气颗粒物采样器(FRM Omni sampler,BGI Inc.,USA)同步采集了PM_(2.5)和PM_(1.0)样品,并用离子色谱(IC)分析了样品中的水溶性无机离子(阴离子:F~-,Cl~-,NO_3~-,SO_4~(2-);阳离子:Na~+,NH_4~+,K~+,Mg~(2+),Ca~(2+)).结果表明:临安区域本底站PM_(2.5)和PM_(1.0)中水溶性无机离子总浓度夏季最低.NH_4~+、SO_4~(2-)和NO3-是最主要的无机离子,在PM_(2.5)中占水溶性无机离子总浓度的比值分别为78%(春季),85%(夏季)和80%(秋季),在PM_(1.0)中占水溶性无机离子总浓度的比值分别为78%(春季),83%(夏季),79%(秋季).NH_4~+和SO_4~(2-)的摩尔比均2,表明SO_4~(2-)完全被NH_4~+中和,可能主要以(NH4)_2SO_4的形态存在.PM_(2.5)和PM_(1.0)中NO_3~-/SO_4~(2-)质量比的变化范围分别为0.31~0.84和0.44~0.63,说明临安市以固定源污染为主.  相似文献   

16.
针对上海市颗粒物的污染和防治问题,利用2014年4月14日—2015年3月24日10个国控监测点的PM2.5和PM10小时数据及对应的气象因素资料,以PM2.5质量浓度占PM10质量浓度的比例为研究对象,使用聚类分析和相关性分析PM_(2.5)/PM_(10)的时空分布特征.结果表明:P2.5和PM10的季节高低为冬春秋夏,PM_(2.5)/PM_(10)的季节分布在不同区域存在差异性.PM_(2.5)/PM_(10)的日变化呈现双峰型趋势,峰值出现在05:00和14:00左右,上午PM_(2.5)/PM_(10)高于下午.颗粒物质量浓度及PM_(2.5)/PM_(10)具有明显的"周末效应",这与车辆通行政策与人类作息时间变动相关.在空间分布上,颗粒物质量浓度及PM_(2.5)/PM_(10)均表现为背景站浦西站浦东站.  相似文献   

17.
卫星观测不仅能反映全球尺度的大气污染状况,也能从城市等区域尺度上监测大气污染物的变化.本文基于2004-2013年MODIS气溶胶标准产品,利用PM_(2.5)卫星遥感估算的统计模型,统计分析了郑州地区的PM_(2.5)质量浓度的年际及季节变化特点,有助于深入研究郑州地区细颗粒物污染水平变化.研究发现,在空间上,郑州地区PM_(2.5)高值区主要集中在郑州市市辖区、中牟县、新郑市、荥阳市以及巩义市西北等地区,低值区主要分布于登封市和巩义市南部的山地地区.在时间上,2004-2011年整个郑州地区PM_(2.5)质量浓度总体呈现逐年增长的趋势,直到2011年达到峰值(108.59μg/m3).2011年之后,该地区PM_(2.5)污染状况有所好转,但仍处于重度污染状态.季节变化方面,PM_(2.5)高值通常出现在冬季(149.28μg/m3),秋季次之,春、夏季该地区PM_(2.5)质量浓度较低(81.71μg/m3).研究结果表明,利用卫星数据可以有效地分析郑州地区的PM_(2.5)时空分布特征,为该地区的PM_(2.5)污染治理提供有力的数据和技术支撑.  相似文献   

18.
以2013—2015年武汉市大气污染物特征及变化趋势为研究对象,对大气污染物综合指数和各污染物单项指数进行分析.其主要结论是:大气污染冬季的污染状况比夏季严重,其中空气质量2013年优于2015年,2014年最差;根据各污染物单项指数,确定颗粒物(PM_(2.5))为大气污染的主要因子;PM_(2.5)、PM_(10)、SO_2、NO_2、CO的浓度冬季大于夏季,O_3的浓度夏季大于冬季;根据各污染物之间相关性及气象因素的分析,PM_(2.5)、PM_(10)、SO_2、NO_2、CO之间均成正相关关系,其中PM_(2.5)与CO的相关性为0.901(P0.01),接近1,说明CO对PM_(2.5)的形成有直接作用;污染物与气象因素的相关性分析,几种污染物与气压、降水量、气温有明显的相关性;根据聚类分析,大气污染变化趋势与季节有关,季节变化特征为夏季春秋季冬季.  相似文献   

19.
为测定太原市初中学校大气细颗粒物(PM_(2.5))的浓度和元素组成,并对暴露于PM_(2.5)中的致癌元素进行环境健康风险评价。文章采取整群抽样的方法,在太原市城区随机选取10所学校,通过小流量分级采样器对PM_(2.5)进行采样,并用电感耦合等离子体质谱仪(ICP-MS)对PM_(2.5)中的元素进行分析。结果显示,采样期间PM_(2.5)的平均浓度为(162.99±107.43)μg/m~3。使用ICP-MS共检测出PM_(2.5)中的66种元素,其中,元素S的含量最高,地壳元素(Si、K、Ca、Fe和Al)次之。元素S、As、Cd、Co、Cr和Ni的平均浓度分别为16 259、38.80、9.25、2.87、84.19和25.12 ng/m~3。健康风险评价结果显示,学校中男生经呼吸途径暴露于各元素的非致癌风险和癌症风险较高。不同人群经呼吸途径暴露于元素Mn的非致癌风险较高(HQ1),暴露于元素Cr的致癌风险较高(R_i10~(-4))。  相似文献   

20.
《河南科学》2016,(8):1301-1306
采用Mini Vol便携式采样器采集西安北稍门、格物楼和南斗角村2015年元旦、劳动节及节日前后各两天大气颗粒物样品,并利用电感耦合等离子体光学发射仪(ICP—OES)测量元素As、Cr、Cu、Mn、Ni、Pb和Zn的含量,分析节日浓度变化特征.结果表明,元旦期间,PM_(2.5)浓度表现为节假日大于节前及节后;南斗角村大气中PM_(2.5)浓度于三个采样期间内均低于其他两个点.大气PM_(2.5)中Cu、Pb和Zn浓度变化与PM_(2.5)一致;As、Mn和Ni含量变化较小;Cr浓度呈现显著上升的趋势.七种重金属空间表现不完全一致.劳动节期间,由于降雨影响,大气PM_(2.5)浓度表现为节假日期间最小,三个采样点空间差异相比元旦减小.细颗粒中重金属Cr、Ni、Pb和Zn与其PM_(2.5)的浓度变化一致;而As、Cu和Mn呈现逐渐递减趋势.空间表现为,BSM大气PM_(2.5)中Cu、Pb和Zn较高;其他四种重金属表现为在NDJC大气细颗粒物中浓度较高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号