首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
本文考虑定义在完备概率空间(Ω、(?),P)上的生灭过程x(t,ω),t≥0,ω∈Ω,其相空间为E=0,1,2,…,转移概率矩阵(P_(ij)(t))(i,j∈E,t≥0)是标准的,并且其Q矩阵是  相似文献   

2.
§1 前言记p_(ij)=p_(ij)(1)。设P=(p_(ij)是一个k×k矩阵,如果p_(ij)≥0 (i,j=1,…,k)且[sum from j=1 to n p_(ij)=1] (i=1,…,k), (0)则称P为随机矩阵。显然,若P_1,P_2是随机矩阵,则P_1P_2也是随机矩阵。特别地,若P是随机矩阵,则P~n=P(n)=[p_(ij)(n)]也是随机矩阵(n=1,2,…)。如果对一切i,j而言,存在着不依赖于i的极限lim P_(ij)(n)=P_j,则称P具有遍历性。有穷齐次  相似文献   

3.
则称P为随机矩阵。显然,若P_1,P_2是随机矩阵,则P_1P_2也是随机矩阵。特别地,若P 是随机矩阵,则P~n=P(n)=[p_(ij)(n)]也是随机矩阵(n=1,2,…)。如果对一切i,j 而言,存在着不依赖于i 的极限lim p_(ij)(n)=P_(ij),则称P 具有追历性。有穷齐次  相似文献   

4.
<正> 由随机过程可知,有限齐次马氏链遍历不可约的充要条件是:存在一个有限自然数k使这里n为状态数,P=(P_(ij))为随机矩阵,P_(ij)~k表示矩阵P~k中位于第i行第j列处的元素。[1]与[2]分别指出对n阶随机矩阵只须作次矩阵乘法或作次矩阵乘法即可判定随机矩阵是否遍历。本文在[3]的基础上应用循环群给出有限齐次马氏链遍历不可约的一个充分条件,并对[2]中定理2的证明部分给出一点注记。  相似文献   

5.
设 A=(a_(ij))是 n 阶对角占优矩阵,即若记 N={1,2,…,n},则对任意 i∈N 都有|a_n|≥sum from j=1 j≠i to n |a_(ij)|.本文所涉及的矩阵总假定是对角占优的。记 J(A)={i∈N||a_(ii)|>sum from j=1 j≠i to n |a_(ij)|}.当 J(A)=N 时,A 为严格对角占优矩阵,当 J(A)≠Φ,且 A 不可约时,A 是不可约对角占优矩阵,这两种矩阵都是非奇异的。当 J(A)≠Φ,A 为可约矩阵时,一九七四年 P.N.shivakumar 和 kim Ho Chew 给出了它为非奇异的一个充分条件:定理.设 A 为可约矩阵,J(A)≠Φ,若对每个 (?)J(A),都存在由 A 中非零元素构成的序列(也叫非零元素链):a_(ii_1),a_(i_1i_2),…,a_(i_(s-1))i_s,i_s∈J(A),那末 A 是非奇异的.P.N Shivakumar 和 kim Ho Chew 在证明此定理时,引用了 M—矩阵的性质,篇幅  相似文献   

6.
1 问题的提出 状态空间H=l~2,控制空间U=l~2,状态X∈H,控制U∈L~1[0,T;U],A=[a_(1j)],B=[b_(ij)] 基本假设:A=(a(1j))满足 满足 sum form i=1 to ∞ sum form j=1 to ∞ α_(ij)~2<+∞,B=(b_(ij)满足sum form i=1 to ∞ sum form j=1 to ∞b_(ij)~2<+∞。 本文的工作是在基本假设下,找有限维系统使其解逼近系统(1)的解,同时保持系统(1)的主要性质。  相似文献   

7.
§1 引言〔1〕中讨论了具有给定边际分布的概率测度的存在性。它的一种情形是基本空间Y 为有限序集。为确定起见,不妨设Y={1,2,…,n}并具有通常的序:P(Y)表Y 上概率测度之集。μ∈P(Y)。其密度记为{μ_i,i∈Y,},其中μ_i≥0,i=1,…,,n(?)μ_i=1。关于具有给定边际分布的概率测度的一个著名命题是(1.1)命题设μ,v∈P(Y),则存在Y×Y 上的概率测度γ满足(1.2) (i)(?)γ_(ij)=μ_i,i=1,…,n;(ii)(?)γ_(ij)=v_i,j=1,…,n;(iii)(?)i相似文献   

8.
对于常系数线性离散系统X(k+1)=PX(k) (1)其中 X(k)=col(x_1(k),x_2(k),……,x_n(k)),P=(P_(ij))_(nxn),(i,j=1,2,…,n)P_(ij)是实常数。如果特征方程|P-μE|=0 (2)的特征根|μ|<1,则(1)的零解是渐近稳定的。对于线性时变离散系统  相似文献   

9.
在[4]中,研究了连续型的马尔可夫过程的可加泛函,本文则对可列状态马尔可失过程,研究了这个问题。对最小过程和[5]中的一阶过程,作者找到了全部的非负有限齐次可加泛函。利用王梓坤在[2]中开创的、侯振挺在[5]中发展的极限过渡法,作者对§1所描述的马尔可夫过程,得到了右连续非负齐次可加泛函的极限表示。§1 定义: 设X={x_?(ω),t<σ(ω)}是定义在完备概率空间{Ω,?,P}上的可列状态齐次马尔可夫过程。状态空间I={1,2,…,n,…},记I={∞}∪I,是I的紧化。其转移概率{P_(ij)(t),i,j∈I,t∈T=[0,∞]}满足下列条件:  相似文献   

10.
用两种方法计算了下列行列式:F_(z)=(?)其中(?)为正定阵。这行列式来源自平稳随机序列的相关函数。在计算过程中还证明了一个有趣的行列式等式:任给矩阵 A=(a_(ij))_(i,i=1,…,n 和两个列向量 b1=(?)及 b_2=(?)以 A_(i,0) 记把矩阵 A 的第 i 列换成 b_1所得之矩阵,以 A_(0,j)记把矩阵 A 的第 j 列换成 b_2所得之矩阵,以 A_(i,j)(i≠j)记把矩阵 A 的第 i 列及第 j 列分别换成 b_1及 b_2所得之矩阵,则(i≠j)|A||A_(i,j)|=|A_(i,0) ||A_(0,j)|-|A_(j,0) ||A_(0,i)|  相似文献   

11.
随机线性拓扑空间   总被引:1,自引:0,他引:1  
本文首次引入随机线性拓扑空间,并借助于随机线性泛函理论推广了Mackey定理与K.Fan不动点定理.1 随机线性拓扑空间的基本定义及性质定义1 称(E,{x~d}_(dε△)为数域K上以概率空间(Ω,σ,μ)为基的随机赋范空间((△,<)为某一定向集),如果E是数域上K的线性空间,对任给d∈△,映象x~d:E→L~+(Ω)(见文[1])满足下面各条(1)x_p~d∈L~+(Ω),且如果?d∈△,x_p~d(ω)=0a,s当且仅当p=θ; (2)x_α~dp(ω)=(α)x_p~d(ω)a.s?α∈E,p∈E,d∈△; (3)?e∈△,?d∈△使得?p,q∈E,都有X_(p+q)~e(ω)≤X_p~d(ω)+X_q~d(ω)a.s;  相似文献   

12.
本文利用矩阵块对角占优的性质,给出矩阵非奇异的几个判定条件。下面用 R~(n×n)表示 n 阶实方阵的全体,用 C~(n×n)表示 n 阶复方阵的全体,并令,Z~(n×n)={A=(a_(ij))∈R~(n×n)|a_(ij)|≤0,i≠j,1≤i,j≤n}若 A 是非奇异 M 一矩阵。则记 A∈M.引理1 设 A=(a_(ij))∈Z~(n×n),且 A_(ij)>0,1≤i≤n,令 A =,则 A∈M  相似文献   

13.
§1 引言考虑线性模型y=Xβ+U_1ε_1+…+U_kε_k (1)其中 X,U_1,…,U_K 分别是已知的 n×p,n×n_1,…,n×n_k 矩阵,秩 X相似文献   

14.
§1定义及记号我们用M_n(R)表示全体n 阶实方阵所成之集合.设A=(a_(ij)∈M_n(R),记号A≥0表示α_(ij)≥0,i,j=1,2,…,n,即A 为非负方阵.定义1 设P∈M_n(R)且P 的每一行和每一列都恰好有一个元素为一个正的实数而其余元素全为0,则称P 为一个n 阶正的广义置换矩阵.  相似文献   

15.
Codecá和Nair利用特征值的方法给出了行列式(f((i,j))ij)iN,jN的计算公式。在本文中,作者利用Smith定理给出矩阵f((i,j))ij)i|N,j|N的行列式的计算公式。  相似文献   

16.
可列非齐次马氏链的强极限定理   总被引:1,自引:1,他引:0  
设{Xn,n≥0},S={1,2,3,…}上具有初始分布q(i)和转移概率Pn=pn(i,j)=P(Xn=j|Xn-1=i)的可列非齐次马氏链,其中i,j∈S,利用马氏链的特性和网微分的方法讨论了{Xn,n≥0}的级数收敛性,建立了若干强极限定理和强大数定律。  相似文献   

17.
设X_1、X_2是定义在概率空间(Ω,F,P)上的、可测度量空间(s,S)中的两个随机元。对于A∈S,A的边界(?)A,若P(X∈(?)A)=0,称A为X的连续集。易知X的一切连续集构成一个σ代数。定义对于随机元(X_1,X_2),(?)X_1的连续集A_1与(?)X_2的连续集A_2,若P(X_1∈A_1,X_2∈A_2)=P(X_1∈A_1),P(X_2∈A_2),称(X_1,X_2)对于连续集独立。对于连续集独立的随机元,不一定概率独立,例  相似文献   

18.
我们考虑混合问题其中L_A=sum from i, j=1 to n / x_i(a(ij)(x) / x_j)是自共轭的一致椭圆型算子,σ是常数,且0≤σ<+∞,Ω是R~n中的有界区域,边界Ω充分光滑, )u/ v是关于(a_(ij))在Ω上的余法向导数。本文通过构造某些适当的积分(比如J(t))利用“凸性方法”及抛物型方程的极值原理,证明在适当的条件下,问题的光滑解只能在一个有界区间  相似文献   

19.
继文献[1]后,又提出了一种中子活化R矩阵元的新表达方式.以~(175)Yb(i或j)-~(160)Yb(j或i),~(153)Gd(i或j)-~(159)Gd(j或i),~(103)Ru(i或j)-~(97)Ru(j或i)或~(95)Zr(i或j)-~(97)Zr(j或i)为中子能谱监测器,j为标准R_(ij)为中子能谱指针.定义相对偏离热化系数x=(R_(ij)-1)/(Q_(0i)-Q_(0j))《1,Q_(0i)和Q(0j)分别为i和j的母核的无限稀释共振积分截面与热中子俘获截面之比值,则R_(ij)=1+a~i_jx,R_(Rj)=1+(?)a~k_mx~m,k代表i和j以外诸核素,R_(kj)级数迅速收敛.R_(kj)的准确度不受Q_(0i)用Q_(0j)的误差的影响.用高精度实验测定诸a~k_m值,可同时用4种中子能谱监测器(兼作标准),以R_(ij)定x,由x和诸  相似文献   

20.
首先引进必要的定义和記号。定义.n×n的方陣是全正的,是指它的任何子陣的行列式。A_r~(-1):=(α_(ij)~((r)))_(i,j)~r表示A_r的逆陣,r=1,2,…,n。向量x∈R~n的p范数定义为‖x‖_p:=(sum from i=1 to n(|x_i|~p))~(1/r),相应的矩阵,A_n的p范数定义为‖A_n‖_p:=(?)(‖A_nx‖_p)/(‖x‖_p)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号