首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 876 毫秒
1.
典型的帶隙基准电压源电路是由CMOS工艺产生的具有负温度系数的寄生横向BJT的发射结电压VEB和具有正温度系数的热电压Vt 相补偿产生零温度系数的基准帶隙电压源。但是VEB与温度不是线性关系, 因此VREF需要被校正。本文介绍了一种高精度自偏置多段二次曲率补偿的CMOS帶隙基准电压源。采用0.5 m CMOS工艺、工作电压为3.3V,该芯片室温下功耗为94W。设计在0 oC—75 oC有效温度系数达到了0.7ppm/oC。  相似文献   

2.
一种二阶补偿的CMOS带隙基准电压源   总被引:4,自引:0,他引:4  
提出了一种通过沟道长度调制效应进行二阶温度曲率补偿的CMOS带隙基准电压源,并分析了这种结构实现二阶温度曲率补偿成立的条件。采用0.35 μm标准CMOS工艺库,在Cadence环境下进行仿真,在-50°~+120℃温度范围内,一阶曲率补偿的温度系数为9.5 ppm/℃,而运用二阶曲率补偿后该基准电压源具有2.7 ppm/℃的低温度系数。  相似文献   

3.
设计了一种具有新型曲率补偿的电流模式的带隙基准电压源电路,通过在高温时产生一路正温度系数的电流注入到输出端来补偿VBE的高阶负温度系数项实现曲率补偿,从而得到更低温度系数的输出电压.同时采用一种有效的启动电路保证电路上电后可正常启动.该设计基于SMIC 0.13 μm CMOS工艺,在1.2V电源电压下,输出基准电压为500 mV,在-30~130℃范围内温度系数的版图后仿真可达到3.1×10-6 V/℃,整个电路功耗为180 μW.  相似文献   

4.
新型结构的高性能CMOS带隙基准电压源   总被引:2,自引:0,他引:2  
运用带隙基准的原理,采用0.5 μm的CMOS(Complementary Metal-Oxide Semiconductor)工艺,设计了一个新型结构的高性能CMOS带隙基准电压源.HSPICE仿真结果表明:电源电压VDD最低可达1.9 V,在温度-30~125℃范围内,电源电压VDD在1.9~5.5 V的条件下,输出基准电压VREF=(1.225±0.001 5) V,温度系数为γTC=14.75×10-6/℃,直流电源电压抑制比(PSRR)等于50 dB.在温度为25℃且电源电压为3 V的情况下功耗不到15 μW.整个带隙基准电压源具有良好的性能.  相似文献   

5.
采用分段曲率补偿的新型带隙基准电压源设计   总被引:1,自引:0,他引:1  
宗永玲  陈中良 《河南科学》2014,(8):1467-1469
设计了一种利用MOS晶体管产生正负温度系数电流的新型带隙基准电压源,并采用分段曲率补偿技术,从而降低基准电压的温度系数,同时增加工作温度范围.该电路使用TSMC 0.6 um标准CMOS工艺进行设计,Spectre仿真结果表明,电源电压为1.5 V,温度范围为-15~95℃时,温度系数为107 ppm/℃,采用分段曲率补偿后,温度系数降为4.28 ppm/℃.  相似文献   

6.
基于CSMC 0.5 μm CMOS工艺,采用CMOS技术,设计一种高性能的带隙基准电压源.带隙基准电压源输出电压经过电平转换电路,反馈回带隙基准电压源中的运算放大器,可以获得良好的电源特性和带负载能力.采用可修调电阻阵列,精确地控制温度系数.仿真结果表明:在5 V电源电压下,温度系数为8.28×10-6/℃,低频电源抑制比为83 dB.  相似文献   

7.
为提高带隙基准电压源的温度特性,采用Buck电压转移单元产生的正温度系数对VBE的负温度系数进行高阶曲率补偿.同时使用共源共栅结构(Cascode)提高电源抑制比(PSRR).电路采用0.5 μm CMOS工艺实现,在5 V电源电压下,基准输出电压为996.72 mV,温度范围在-25~125 ℃时电路的温漂系数为1.514 ppm/℃;当电源电压在2.5~5.5 V变化时,电压调整率为0.4 mV/V,PSRR达到59.35 dB.  相似文献   

8.
提出了一种通过沟道长度调制效应进行二阶温度曲率补偿的CMOS带隙基准电压源,并分析了这种结构实现二阶温度曲率补偿成立的条件。采用0.35μm标准CMOS工艺库,在Cadence环境下进行仿真,在-50°~+120℃温度范围内,一阶曲率补偿的温度系数为9.5ppm/℃,而运用二阶曲率补偿后该基准电压源具有2.7ppm/℃的低温度系数。  相似文献   

9.
为了实现可变参考电压的电路结构,且降低该参考电压的温度系数,采用CSMC 0.6 μm的CMOS N阱工艺模型,设计了一种新型高精度可调节CMOS带隙基准电压源电路.该电路在传统带隙基准的基础上,增加了一级运算放大器,并详细分析了合理的参数取值,可以通过调整电阻值来得到任意输出参考电压.设计结果表明,在-55℃~125℃温度范围内,该电路不仅具有良好的温度特性,对工艺也不敏感.  相似文献   

10.
设计了一种指数型曲线补偿的带隙基准源电路.利用Bipolar管的电流增益随温度呈指数型变化的特性,有效地对基准源进行指数型温度补偿.电路具有较低的温度系数,并且结构简单;利用深度负反馈的方法,可有效地抑制电源电压变化给带隙基准源所带来的影响,提高了电源抑制比;为了加大电路的带负载能力,该电路增加了输出缓冲级.用spectre工具对其进行仿真,结果显示在-40 ℃~85 ℃的温度范围内,电路具有12×10-6/℃的低温度系数;当电源电压在4.5 V到5.5 V之间变化时,基准源电压的变化量低于85 μV.电路采用0.6 μm BICMOS工艺实现.  相似文献   

11.
为获得一个稳定而精确的基准电压,提出了一种适用于低电源电压下高阶曲率补偿的电流模式带隙基准源电路,通过在传统带隙基准源结构上增加一个电流支路,实现了高阶曲率补偿。该电路采用Chartered 0.35μm CMOS工艺,经过Spectre仿真验证,输出电压为800mV,在-40~85℃温度范围内温度系数达到3×10^-6℃^-1,电源抑制比在10kHz频率时可达-60dB,在较低电源电压为1.7V时电路可以正常启动,补偿改进后的电路性能较传统结构有很大提高.  相似文献   

12.
论文在分析传统带隙基准源的基础上,设计了低电压输出的带隙基准电压源电路.采用Charter 0.35μm标准CMOS工艺,并用Mentor Graphics公司的Eldo仿真器对带隙基准电压源电路的电源特性、温度特性进行了仿真.该带隙基准电压源的温度系数为19-ppm/℃,在室温下当电源电压2.0~3.0 V时,基准电压源输出电压为(915.4±0.15)mV,功耗小于0.2-mW.  相似文献   

13.
为高速双模预分频器提供所需的稳定的参考电平,提出了一种基于带隙基准核的在芯片可调低电压带隙基准源电路设计方法,通过在双极型晶体管的附近并联少量电阻,获得数值可调的、常温下具有零温度系数的低电压基准。讨论了运放的反馈环路、失调电压以及开环增益等各项因素对基准电压精度的影响,并给出了相关的分析公式。设计采用0.18μm数模混合CMOS工艺。仿真结果表明,电路的电源抑制比(PSRR)为-48dB,-40℃~+125℃温度变化范围内的温漂系数为8.3×10-6/℃。电路综合性能良好,能满足低温漂、高精度的设计要求。  相似文献   

14.
基于0.35μm CSMC(central semiconductor manufacturing corporation)工艺设计,并流片了一款典型的带隙基准电压源芯片,可输出不随温度变化的高精度基准电压。电路包括核心电路、运算放大器和启动电路。芯片在3.3V供电电压,-40~80℃的温度范围内进行测试,结果显示输出电压波动范围为1.212 8~1.217 5V,温度系数为3.22×10-5/℃。电路的版图面积为135μm×236μm,芯片大小为1mm×1mm。  相似文献   

15.
为消除运算放大器失调电压对带隙电压精度的影响,采用NPN型三极管产生ΔVbe,并设计全新的反馈环路结构产生了低压带隙电压.电路采用SMIC 0.18μm CMOS工艺实现,该新型低压带隙基准源设计输出电压为0.5V,温度系数为8ppm/℃,电源抑制比达到-130dB,并成功运用于16位高速ADC芯片中.  相似文献   

16.
介绍了一种基于CSMC 0.5-μm 2P3M n-阱混合信号CMOS工艺的高阶温度补偿的带隙参考源。该CMOS带隙参考源利用了Buck电压转换单元和与温度无关的电流,提供了一种对基极-发射极电压V_BE的高阶温度补偿。它还采用共源共栅结构以提高电源抑制比。在5V电源电压下,温度变化范围为-20~100℃时,该带隙参考源的温度系数为5.6ppm/℃。当电源电压变化范围为4~6V时,带隙参考源输出电压的变化为0.4mV。  相似文献   

17.
提出了一种新颖的利用负反馈环路以及RC滤波器提高电源抑制比的高精密CMOS带隙基准电压源.采用上海贝岭的1.2μm BiCMOS工艺进行设计和仿真,spectre模拟表明该电路具有较高的精度和稳定性,带隙基准的输出电压为1.254V,在2.7V-5.5V电源电压范围内基准随输人电压的最大偏移为0.012mV,基准的最大静态电流约为11.27μA;当温度-40℃-120℃范围内,基准温度系数为1mV;在电源电压为3.6V时,基准的总电流约为10.6μA,功耗约为38.16μW;并且基准在低频时具有100dB以上的电源电压抑制比(PSRR),基准的输出启动时间约为39μs.  相似文献   

18.
设计了一个低电源电压的高精密的CMOS带隙电压基准源,采用SMIC 0.18μm CMOS工艺。实现了一阶温度补偿,具有良好的电源抑制比。测试结果表明,在1.5 V电源电压下,电源抑制比为47 dB,在0~80℃的温度范围内,输出电压变化率为0.269%,功耗为0.22 mW,芯片核面积为0.057 mm2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号