首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
采用水热腐蚀技术制备的铁钝化多孔硅表面具有可调超结构。详细研究了铁钝化多孔硅水热制备过程中单晶硅片表面的形貌演化。结果表明,在水热腐蚀过程中,存在两种同时发生的腐蚀机制:即对缺陷的化学腐蚀和通过形成微电池所发生的电化学腐蚀。在腐蚀发生的初期,化学腐蚀占主导地位;随后电化学腐蚀逐步起主导作用并对铁钝化多孔硅表面超结构的最终形成起关键作用。还讨论了发生在徽电池中微型阳极和微型阴极上的化学反应。研究结果为实现铁钝化多孔硅表面形貌的人为控制提供理论指导。  相似文献   

2.
通过改变溶液的组成成份,用水热腐蚀技术原位制备出具有不同表面钝化状况的四类多孔硅样品.将上述样品室温下存放于空气中,其光致发光谱的时间演化特性差异很大.其中,氢钝化多孔硅的发光强度衰减最快,峰位蓝移量也最大,而铁钝化多孔硅的发光强度和峰位则几乎不发生变化.红外吸收谱实验揭示出这种差异可能来源于样品表面钝化成份的不同.此发现为一步原位制取具有稳定发光性能的多孔硅提供了新的思路.  相似文献   

3.
采用等离子体增强化学气相沉积技术和旋涂法相结合制备了纳米硅/P3HT复合薄膜.利用Raman散射、紫外-可见吸收光谱(UV-Vis)和光致发光谱(PL)等技术对复合薄膜的微观结构及光学特性进行了分析.结果表明:氢流量的增加,可以有效钝化硅中的缺陷,提高纳米硅薄膜的晶化度;复合薄膜中纳米硅的引入改善了P3HT在短波长范围的吸收能力,但存在与P3HT辐射发光相竞争的过程;对复合薄膜的光致发光机制进行了分析.  相似文献   

4.
采用电化学沉积Al方法钝化用脉冲电化学腐蚀制备的n型多孔硅(n-type porous silicon,n-PS)表面以改善其发光性能和稳定性。通过扫描电镜(SEM)、傅里叶变换红外吸收光谱(FT-IR)及在室温于500~700 nm范围内荧光光谱研究n-PS表面Al钝化后的表面结构、形貌及光致发光性能(PL),探讨Al在n-PS表面的钝化作用,并通过改变电压和时间研究钝化条件对PL性能的影响。研究结果表明:多孔硅经Al钝化后其表面结构显得更加致密均匀;与钝化前相比,其发光强度加强,约为钝化前的2倍,且分别在钝化电压为18 V及钝化时间为60 min或钝化电压为25 V及钝化时间为30 min左右时,其发光强度较高。  相似文献   

5.
用电化学方法制备不同孔隙率的多孔硅,然后用脉冲激光沉积的方法,以多孔硅为衬底生长氧化锌(ZnO)薄膜,研究多孔硅的孔隙率对ZnO薄膜的质量和光致发光谱的影响,用X射线衍射仪和扫描电子显微镜表征ZnO薄膜的结构性质.结果表明,当多孔硅的孔隙率较大时,沉积的ZnO薄膜为非晶结构.沉积上ZnO薄膜之后,多孔硅的发光谱蓝移,由于ZnO薄膜缺陷较多,其深能级发光较强.ZnO的深能级发光与多孔硅的橙红光相叠加,得到了可见光区宽的光致发光带,呈现白光发射.  相似文献   

6.
通过改变溶液的组成成份,用水热腐蚀技术原位制备出具有不同表面钝化状况的四类多孔硅样品,将上述样品室温下存放于空气中,其光致发光谱的时间演化特性差异很大。其中,氢钝化多孔硅的发光强度衰减最快,峰位蓝移量也最大,而铁钝化多孔硅的发光强工和峰位则几乎不发生变化。红外吸收谱实验揭示出这种差异可能来源于样品表面钝化成份的不同。此发现为一步原位制取具有稳定发光性能的多孔硅提供了新的思路。  相似文献   

7.
研究多孔硅的发光有重要意义.我们研究了湿法腐蚀多孔硅、铁掺杂多孔硅、乙醇中的多孔硅颗粒的发光.湿法腐蚀制备多孔硅,腐蚀速度不均匀,发光随腐蚀时间没有规律,不好把握过程,虽可以得到不同波段发光,但很难通过严格控制湿法腐蚀的条件来得到想要的发光.稀土有自己的能级,稀土掺杂对多孔硅发光是有影响的,铁不像稀土有自己的能级,我们发现铁掺杂对多孔硅发光没有明显影响.将多孔硅的纳米颗粒置于乙醇中,与薄膜时相比,未发现其发光峰形有明显改变.  相似文献   

8.
晶体硅太阳电池生产中,降低表面反射率能够提高太阳电池短路电流和转换效率.纳米孔硅的表面反射率极低,但报道中所实现的太阳电池输出参数(开路电压、短路电流、填充因子)都低于金字塔结构表面.采用对比法从光学性能、表面微结构和电极接触上对纳米孔硅和金字塔太阳电池进行比较分析,来研究纳米多孔硅太阳电池转换效率的抑制因素.研究表明短时间腐蚀的纳米孔硅太阳电池表面沉积氮化硅钝化膜后的平均反射率提高.长时间腐蚀的纳米孔硅表面沉积氮化硅后在短波段的反射率极低,因此平均反射率小于金字塔结构表面.但是由于纳米孔硅太阳电池的表面复合率高,而孔壁上附着的毛刺不仅会进一步增大表面复合,还会削弱表面钝化效果,因此短波段激发的光生载流子难以被太阳电池利用.所以,光利用和表面复合是抑制纳米孔硅太阳电池开路电压和短路电流的原因,而过大的串联电阻是纳米孔硅太阳电池短路电流和填充因子低的另一个原因.  相似文献   

9.
采用硫代乙酰胺的HF酸水溶液作为氧化剂对初始多孔硅进行钝化处理,改善了多孔硅表面结构并提高了发光强度.同时研究了钝化电流,钝化温度和钝化时间等一系列因素对钝化多孔硅光致发光强度的影响.实验发现,在60℃恒温下,对样品通电流1 mA/cm2,进行10 min的钝化处理可以获得最强的光致发光,发光强度比初始样品发光强度增强了一个数量级.另外,通过傅立叶红外吸收谱(FTIR)以及X射线光电子能谱(XPS)测试分析,探讨了钝化处理使得多孔硅发光强度提高的原因.  相似文献   

10.
通过简单的溶液浸泡-热分解方法成功地在氧化多孔硅的孔中沉积了纳米银粒子,形成了银/氧化多孔硅/硅的复合结构.用X射线衍射光谱(XRD)和扫描电子显微镜(SEM)表征了多孔硅上纳米银粒子的存在.  相似文献   

11.
海藻酸钙/多孔硅复合材料对水中铜离子的吸附性能研究   总被引:1,自引:0,他引:1  
对比研究了海藻酸钙/多孔硅复合材料和纯多孔硅对铜离子的吸附作用,考察了溶液初始pH、温度、吸附剂加入量和吸附时间等因素对海藻酸钙/多孔硅复合材料吸附铜离子的影响。结果表明:海藻酸钙/多孔硅复合材料在相同铜离子浓度下的吸附性能优于纯多孔硅,其吸附速率也明显大于纯多孔硅。利用SEM、FTIR、BET等方法分别测定了改性前后多孔硅材料的形貌和物理化学性质。利用Langmuir等温吸附式计算出海藻酸钙/多孔硅复合材料在60℃下和pH为5.0时的铜离子最大吸附量为49.02mg/g。  相似文献   

12.
研究氯化铜溶液中多孔硅光致光致发光猝灭的机制,瞬态光致发光和傅里叶变换红外光谱表明铜-多孔硅界面电子态提供了非辐射复合的途径。  相似文献   

13.
多孔硅的制备与微结构分析   总被引:1,自引:0,他引:1  
本文通过电化学阳极氧化方法制备了多孔硅,并对它的微观形貌和红外吸收光谱进行分析,结果表明多孔硅的微观结构与电流密度、腐蚀流配比有关。随着电流密度的升高,氢氟酸浓度的增大,多孔硅的微观结构将从“海绵”状转变成“树枝”状,随腐蚀时间延长,Si-H键和Si-O键明显地增强,这有利于改善发光。  相似文献   

14.
用阳极电流腐蚀法制备多孔硅(PS),并将其分散到无水乙醇中形成溶胶.用荧光光谱仪测定了多孔硅溶胶的荧光强度与浓度的关系,研究了不同表面活性剂的掺入对溶胶体系的稳定性及其荧光强度的影响.进行了多孔硅溶胶的电迁移实验,并发现不同的表面活性剂的加入可使多孔硅溶胶带不同电荷,从而使多孔硅溶胶的电迁移变的可控.用扫描电镜(SEM)和X光电子能谱(XPS)对多孔硅溶胶电迁移沉积层进行了对比分析.研究表明,溶胶体系中表面活性剂的加入对沉积层的成分没有影响,可以用这种方法实现多孔硅纳米粒子的可控组装.  相似文献   

15.
利用水热技术制备了系列镍钝化多孔硅样品,并对其表面形貌和光致发光谱进行了研究。实验表明,样品的表面形貌与其光致发光特性之间存在强烈的关联:采用具有较低Ni~(2 )浓度的腐蚀液所制备的样品表面形貌更为均匀,并具有相对较强的发光和较窄的发光峰。初步探索了通过对样品表面形貌的控制来改善样品发光性能的有效途径。  相似文献   

16.
材料的自发辐射特性可通过将其置入微型光学腔体中而得到控制。详细论述了多孔硅微腔的制备方法和光学特性研究进展,讨论了多孔硅微腔发光的时间、温度、能量效应及其影响因素,并展望了多孔硅微腔的应用前景。  相似文献   

17.
本文采用HF-醇溶液法制备了多孔硅.实验表明,它提高了多孔硅中的游离氟离子浓度,改善了电解液与硅片的润湿性,有利于形成均匀的多孔硅;在非光照条件下,可制成N型多孔硅.  相似文献   

18.
通过电化学腐蚀的方法制备发橙色荧光的多孔硅,采用荧光光谱和透射电镜对制备的多孔硅进行表征.结果表明,其在空气中放置时,荧光会逐渐降低,直至完全消失.进一步对其透射电镜图片进行分析认为,令其发光的根本原因是多孔硅内部存在着单晶的硅晶粒.通过热反应和光反应两种方法在多孔硅表面引入Hg2+识别基团,得到多孔硅化学传感器S1和S2.二者均可实现对Hg2+的选择性识别.  相似文献   

19.
为了用计算机模拟电化学方法制备多孔硅的过程,基于Monte Carlo和扩散限制模型(DLA)建立一种新模型,引入耗尽区范围、腐蚀半径和腐蚀几率等参数,用Matlab来实现.模拟得到了电流密度、HF酸浓度、腐蚀时间以及硅片掺杂浓度等实验条件对多孔硅孔隙率的影响趋势,与实验结果一致,模拟出的孔隙率值也与实验值接近.因此所建立的模型可以用来模拟电化学法制备多孔硅的过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号