首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
综合类   10篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The boron-doped type-Ib gem diamond crystals were synthesized successfully by adding amorphous boron into a system of graphite and Kovar catalyst under high pressure and high temperature (HPHT).The effect of additive boron on type-Ib gem diamond was extensively studied including the growth characteristic,morphology and nitrogen concentration.The synthesized boron-doped type-Ib gem diamond crystals were characterized by optical microscope (OM),scanning electron microscope (SEM) and infrared spectrometer (IR)...  相似文献   
2.
Investigations of crystal habit, micro-topographic imaging, micro-composition and micro-structural analysis of HPHT synthetic diamonds from the Fe-C(H) system indicate that most of them have an octahedral habit. The crystals grow mainly layer-to-layer from center to periphery. HPHT synthetic diamond is smaller in size than natural diamond because it only goes through nucleation and growth in the early stage. In the middle and late stages, due to the coalescence of diamond grains related to differences of surface energy, the growth of HPHT synthetic diamond is limited. The active energy (E) of transforming single nitrogen into a nitrogen-pair is lowered and the time of transforming single nitrogen into a nitrOgen-pair is shortened because of the existence of hydrogen. Therefore, aggregate nitrogen (A-centers) may exist in synthetic diamond from HPHT and explosive detonation processes. It needs further discussion on a worldwide view that the time of natural diamond formation extracted from nitrogen aggregation is some hundred million years. Consideration of the way in which surface energy influences the growth of diamond can help to understand some of the remaining issues (e.g. growth mechanism, etc.) in the HPHT synthetic process and effectively explain the formation of natural diamond in terms of HPHT thermodynamic theory. Especially, it is important to pay more attention to the influence of hydrogen on surface energy in that hydrogen may be a "bridge" for explaining the formation of HPHT synthetic and natural diamond.  相似文献   
3.
Diamond crystals with low nitrogen concentration were synthesized from the Fe-Ni-C system with Ti additive at high pressure and high temperature (HPHT) in a china-type cubic high pressure apparatus (CHPA). The synthesis pressure range was 4.8-5.2 GPa, and the temperature range was 1420-1600 K. The lowest synthesis pressure for diamond fell first and then rose with the increase of Ti additive. The color, shape, surface morphology and nitrogen impurity concentration of the synthesized diamond crystals were characterized using optical microscopy (OM), scanning electron microscopy (SEM) and micro Fourier transform infrared (FTIR) spectrometry. The results show that the Ti additive has significant effects on color, growth rate, crystal shape, surface morphology and nitrogen impurity con- centration of the synthesized diamond crystals. The color of diamond crystals synthesized without Ti additive is yellow, while that with Ti additive becomes light and nearly colorless. The growth rate without Ti additive is higher than that with Ti additive. The crystal shapes of as-grown diamond crystals vary with the increase of Ti additive. The {111} crystal faces become dominant and some {311} crystal faces appear with the increase of Ti additive. The concentration of nitrogen impurity in diamond crystals without Ti additive is higher than that with Ti additive.  相似文献   
4.
Study on growth of coarse grains of diamond with high quality under HPHT   总被引:1,自引:1,他引:0  
The growth of coarse grains of diamond was observed with graphite as carbon source and Fe80Ni20 alloy powder as catalyst at HPHT in a China-type SPD 6×1670T cubic high-pressure apparatus with highly exact control system. To synthesize coarse grains of diamond crystal with high quality, advanced indirect heat assembly, powder catalyst technology and catalyst with optimal granularity were used. Especially the nucleation of diamond and the growth rate were strictly controlled by the optimized synthesis craft. At last, diamond crystals (about 0.85 mm) in the perfect hex-octahedron shape were successfully synthesized at ~5.4 GPa and ~1360℃ in 60 min. The characteristic of crystal growth with powder catalyst technology under HPHT was discussed. The results and techniques might be useful for production of coarse grains of diamond.  相似文献   
5.
The diamond-to-graphite transformation at diamond-stable conditions is studied by temperature gradient method (TGM) under high pressure and high temperature (HPHT), although it is unreasonable from the view of thermodynamic considerations. It is found that, at diamond-stable conditions, for example, at 5.5 GPa and 1550 K, with fine diamond grits as carbon source and NiMnCo alloy as metal solvent assisted, not only large diamond crystals, but metastable regrown graphite crystals would be grown by layer growth mechanism, and the abundance of carbon source in the higher temperature region is indispensable for the presence of metastable regrown graphite crystals. From this transformation, it is concluded that, with metal solvent assisted, although the mechanism of crystal growth could be understood by the macro-mechanism of solubility difference between diamond and graphite in metal solvents, from the point of micro-mechanism, the minimum growth units for diamond or graphite crystals should be at atomic level and unrelated to the kinds of carbon source (diamond or graphite), which could be accumulated free-selectively on the graphite with Sp2Tr or diamond crystals with sp3 bond structure.  相似文献   
6.
High quality cubic diamond crystals were grown using the temperature gradient method at high pressure and high temperature(HPHT),in a new FeNi alloy as solvent.The crystals were grown at relatively low temperatures suitable for the growth of {100} faces.An increase in the radial growth rate,and inhibition of the axial growth caused the growth of large,high quality cubic diamond single crystals at high growth rates.For example,over 33 h,the radial growth rate was 0.22 mm/h,while the axial growth rate was only 0.08 mm/h;the growth rate by weight was also increased to 7.3 mg/h.The yellow color of our crystal samples was more uniform than samples from Sumitomo Corporation of Japan and Element Six Corp.The Raman FWHW of the 1332 cm 1 peak in our diamond sample was smaller than the Element Six Corp.sample,but larger than that of the Sumitomo Corp.sample.The nitrogen content of our diamond samples was 240 ppm,which was much higher than the Sumitomo and Element Six samples because of the higher growth rate of our diamond samples.  相似文献   
7.
通过高温高压方法合成出稀土元素Sm填充n型方钴矿化合物SmxCo4Sb12(0〈x〈1),并考察了在室温下Sm填充率对热电性能的影响规律.结果表明:SmxCo4Sb12化合物表现为n型传导;电阻率和Seebeck系数随着合成压力的增加逐渐增加;晶格热导率随着Sm填充分数的增加而降低,在Sm填充量为0.5时达到最小值.室...  相似文献   
8.
本文利用六种铁基粉末触媒(FeNiNa,n=0,1,2,3,d,5X。代表Fe在触媒中的含量,Xn〉xn-1)在国产六面顶压机上进行了金刚石单晶的合成实验,研究了高温高压条件下(~6GPa,~1600℃),铁基粉末触媒随铁含量的改变,石墨碳—铁基触媒体系合成金刚石条件的变化规律以及金刚石单晶的生长特性,利用穆斯堡尔谱对金刚石中铁元素形成的包裹体进行了检测.结果表明,随着铁基粉末触媒中铁含量的增加,合成金刚石的压力和温度条件逐渐增高,金刚石生长的“V形区”上移,同时得出了铁基粉末触媒适合高温区(110)和(111)面生长以及金刚石中铁元素以FeNi和FeyC形式存在的结论.  相似文献   
9.
介绍利用高温高压(HPHT)合成高质量金刚石单晶和化学气相沉积法(CVD)制备金刚石薄膜的设备、方法、工艺参数以及热丝CVD和微波等离子体CVD的优缺点;P型和N型金刚石掺杂研制现状.重点介绍N型金刚石掺杂的困难,氮、锂、钠、磷、硫等杂质的掺杂效果,共掺杂对于金刚石薄膜的影响,以及近年来P型和N型掺杂取得的成果.  相似文献   
10.
深井压裂井下管柱载荷与轴向变形研究   总被引:1,自引:1,他引:0  
根据深井高温高压条件下的压裂施工过程,综合考虑井身轨迹、管柱和井下工具结构,建立压裂管柱综合力学模型;研究深井压裂管柱在自重、内压、外压、各种效应力、粘滞摩阻力、套管支承反力、弯矩和锚定、坐封压力等多种载荷联合作用下的变形,并进行强度分析和校核。给出了一套实用的压裂管柱力学计算步骤、方法与公式,为准确地掌握压裂过程中管柱的受力及变化规律提供理论依据,从而优化管柱组合与施工参数,提高作业效果和成功率。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号