首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
综合类   10篇
  2010年   2篇
  2008年   3篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
SBAR中培养条件对好氧颗粒污泥特性影响   总被引:9,自引:0,他引:9  
采用气升式间歇反应器研究了好氧污泥颗粒化过程,分别考查了厌氧颗粒污泥和活性污泥为接种污泥时好氧污泥颗粒化过程及其特性的不同,并且分析了循环时间为4 h和12h时好氧颗粒污泥的菌群形态和粒径分布.实验结果表明:活性污泥接种形成的好氧颗粒污泥相对密度达1.025,含水率96%,而厌氧颗粒污泥驯化形成的好氧颗粒污泥相对密度为1.008 7,含水率98%;在4 h循环时间下,颗粒粒径主要在1.5~2.0 mm,杆菌为优势菌,而在12 h循环时间下,颗粒污泥粒径主要分布在1.0~1.5 mm,球菌为优势菌.  相似文献   
2.
A 2O-MBR工艺反硝化脱氮除磷研究   总被引:7,自引:0,他引:7  
以自行设计的双反应器A2O-MBR为研究对象.对模拟生活废水的脱氮除磷进行了研究.结果表明:当N、P负荷为0.14和0.3 kg·m-3·d-1时,COD、N、P去除率分别为90.5%、80.6%和67.7%,系统不必外投硝酸盐即可实现反硝化除磷.具有很强的反硝化脱氪除磷能力,反硝化聚磷菌(DPAOs)占总聚磷菌(PAO)的比例和反硝化除磷量占总除磷量的比率分别达70.00%和69.81%;污泥回漉中硝酸盐量超过一定范围会发生对厌氧释磷的抑制.本系统中当进水ρ(COD):ρ(TP)为30:1时,进水COD与回流污泥硝酸盐的比例应高于30:1.采用问歇抽吸出水有助于延缓膜污染,膜出水不受污泥沉降性的影响.  相似文献   
3.
生物陶粒柱—PAC—MBR系统处理软用水研究   总被引:2,自引:0,他引:2  
利用生物陶粒柱和粉末活性炭结合膜生物反应器处理饮用水,研究表明,该预处理工艺不仅解决了膜生物反应器氨氮去除不力的弱点,避免了亚硝酸盐的积累,而且极大地降低了膜生物反应器的有机负荷,生物陶粒柱-PAC-MBR系统高锰酸盐指数平均去除率为76.97%,氨氮和亚硝酸盐的平均去除率分别达到95.50%和99.15%;而预处理工艺还可以减轻浓度极化,延缓膜污染,在试验过程中形成的膜孔阻力和滤饼阻力之和比没有预处理的膜生物反应器中超滤膜下降了72%。  相似文献   
4.
生物陶粒柱-PAC-MBR系统处理饮用水研究   总被引:6,自引:0,他引:6  
利用生物陶粒柱和粉末活性炭结合膜生物反应器处理饮用水,研究表明,该预处理工艺不仅解决了膜生物反应器氨氮去除不力的弱点,避免了亚硝酸盐的积累,而且极大地降低了膜生物反应器的有机负荷.生物陶粒柱-PAC-MBR系统高锰酸盐指数平均去除率为76.97%,氨氮和亚硝酸盐的平均去除率分别达到了95.50%和99.15%;而预处理工艺还可以减轻浓差极化,延缓膜污染,在试验过程中形成的膜孔阻力和滤饼阻力之和比没有预处理的膜生物反应器中超滤膜下降了72%.  相似文献   
5.
不同运行模式序批式膜生物反应器中污泥特性研究   总被引:2,自引:0,他引:2  
比较了不同运行模式(AO、AOA及A 2O)对序批式膜生物反应器(SBMBR)污泥特性的影响.结果表明:运行模式对污泥粒径存在明显的影响,曝气时间较长的AO MBR及厌氧末引入缺氧段的A 2O MBR,有助于形成紧密而细小的颗粒.而粒径大且结构松散的污泥耗氧速率较高;充分的好氧时间则有利于耗氧速率的提高.好氧吸磷速率受运行方式影响,且与耗氧速率呈正相关性.适宜的厌氧阶段时长有助于提高污泥厌氧释磷能力;缺氧段及其位置的设置对反硝化除磷菌的选择与富集影响较大.本试验中A 2O MBR中反硝化聚磷菌(DPAOs)比例为40.6%,分别比AO及AOA MBR中提高了0.57和0.34倍.膜反应器中膜污染主要由膜表面滤饼层导致.曝气时间只是控制膜污染的因素之一,膜污染随污泥平均粒径的减小而加重,运行方式对膜污染也起着不可忽视的作用.  相似文献   
6.
序批式膜生物反应器脱氮除磷性能研究   总被引:9,自引:1,他引:8  
采用平行试验的方式对比序批式膜生物反应器与传统膜生物反应器在不同进水碳氮比条件下对污染物质的去除效果.试验结果表明,序批式膜生物反应器强化了传统膜生物反应器的脱氮除磷性能.进水碳氮比在(7.8~32.2)∶1范围内,序批式膜生物反应器TP平均去除率为93.9%,TN平均去除率由传统膜生物反应器的31.8%提高至87.4%,且保持稳定,无需外加碳源.序批式膜生物反应器混合液EPS含量高于传统膜生物反应器.  相似文献   
7.
通过逐步缩短沉降时间和提高氮负荷的方法,考察水力选择压和生物选择压共同作用下的好氧颗粒污泥系统启动过程及污泥特性.试验结果表明,系统启动期间,颗粒平均粒径36 d增至0.5 mm,第90 d达到0.9 mm,粒径平均增速为9.3 μm·d-1;前53 d内污泥负荷为0.4~0.6 g·g-1·d-1,表观污泥产率为0.40~0.52 g·g-1,当生物量增长后,污泥负荷降至0.2~0.4 g·g-1·d-1,表观污泥产率减小至0.17~0.25 g·g-1;40 d后SVI稳定在(15±5)mL/g范围内,沉降性能良好;反应器除污染效果好,10 d后COD去除率稳定在80%左右,NH+4-N去除率达到98%以上,且随着氮负荷提高,单位质量污泥的NH+4-N反应速率提高,AOB、NOB和异养菌的活性都在增大.  相似文献   
8.
解体好氧颗粒污泥修复   总被引:3,自引:0,他引:3  
考察了加入新的活性污泥使解体好氧颗粒污泥完成修复的可行性.解体好氧颗粒污泥对新加入的活性污泥进行吸附,在各种选择压力特别是水力剪切力作用下和原有颗粒污泥形成一个有机整体.大约3周时间,解体颗粒污泥被完全修复.扫描电镜观察发现,被修复后的颗粒污泥呈现非常规则的结构,微生物相十分致密.在解体颗粒污泥逐渐被修复的过程中,颗粒平均粒径仅从最初的2.8mm增至2.9mm,说明活性污泥在颗粒污泥上的附着主要发生在颗粒的空穴.而颗粒污泥的沉降性能和强度都得到了极大的改善,颗粒沉降速率和完整性系数分别由最初的72m/h和56.8%提高到110m/h和65.8%.新加入的活性污泥除了部分用于修复解体颗粒污泥,其余在选择压力等的作用下形成了新的好氧颗粒污泥.  相似文献   
9.
曝气强度对MBR活性污泥性质和膜污染的影响   总被引:4,自引:0,他引:4  
本研究深入探讨了在浸没式生物膜反应器(MBR)中不同曝气强度下活性污泥性质的变化和膜污染问题。试验结果表明:MBR膜污染可分为2个阶段,运行前20dMBR-B(曝气量为0.6m3/h)的膜污染较MBR-A(曝气量为0.2m3/h)严重,而20d后MBR-A的膜污染速率高于MBR-B;曝气强度的差异导致了活性污泥粘度的不同,但污泥粘度与膜污染的相关性不显著;2个MBR污泥浓度差异很小,曝气强度对污泥浓度基本没有影响;曝气强度主要影响着结合态胞外聚合物(EPS)外层(LB-EPS)的变化,对结合态EPS内层(TB-EPS)的影响较小,LB-EPS和蛋白质类LB在整个运行期间与膜污染速率呈现显著正相关,蛋白质是膜污染的主要污染物。  相似文献   
10.
移动床生物膜反应器处理低浓度污水的性能   总被引:16,自引:0,他引:16  
研究了MBBR(移动床生物膜反应器)处理低浓度生活污水时启动和运行的性能和特点,通过微镜和扫描电镜观察了反应器中的微生物构成和形态,并且考察了悬浮污泥与填料生物膜之间的关系。试验中用填料充填比为25%的MBBR处理COD质量浓度在100mg/L左右的生活污水,水力停留时间1.9h,COD去除率可以达到85%,出水BOD5质量浓度一般都小于5mg/L。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号