首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
综合类   8篇
  2014年   3篇
  2012年   1篇
  2005年   1篇
  2002年   1篇
  2000年   1篇
  1996年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
基于瞬时无功功率理论的SVC信号检测新方法   总被引:2,自引:0,他引:2  
静止无功补偿装置(SVC)信号检测的实时性与准确性对其补偿效果影响甚大,以往使用的检测方法在这些方面存在缺陷,文中介绍了一种基于瞬时无无功率理论的SVC装置信号检测新方法,详细讨论了新检测方法的理论依据,检测公式和实现方法,分析了它与传统方法比较所具有的优点。最后给出了实验结果。  相似文献   
2.
针对电网用户端谐波源的某次或若干次超标的谐波电流进行补偿具有重要的实用意义。该文提出一种改进的离散傅立叶变换(HDFT)和离散傅立叶反变换(IHDFT)算法,在基于数字信号处理器(TMS320C32)的并联型有源电力滤波器中,对电网用户端的谐波电流信号进行离散化分频,并依据分频结果获取补偿指定次或指定若干次谐波的指令信号。最后,本文还对该算法建立仿真模型,判断谐波的补偿效果,并通过实验予以验证。  相似文献   
3.
针对微电网中采用传统双环控制的逆变器并联系统功率均分精度较低以及输出电压和频率的偏移问题,分析了并联系统的功率均分机理及输出电压外特性,提出了一种基于虚拟阻抗和输出电压-频率瞬时值调节的逆变器并联运行功率与电压均衡控制策略。在传统的双环控制器中增加虚拟阻抗环,改善了输出阻抗特性,采用P-ω、Q-V下垂控制法提高了功率均分精度;同时加入输出电压幅值和频率调节环,对由下垂引起的电压、频率的偏移进行二次调节,能保证较高的输出电压质量。仿真和实验结果表明,所提出的功率与电压均衡控制策略使孤岛微网中的并联逆变器较好地均分负载功率,同时维持输出电压和频率为额定值,验证了所提算法的有效性。  相似文献   
4.
5.
针对三相四桥臂逆变器直接并联时的零序电流控制问题,通过建立直接并联三相四桥臂逆变器的桥臂平均模型,推导出零序电流的动态平均模型,揭示了系统中零序环流的形成机理.基于常用的载波正弦脉冲宽度调制(SPWM)方法,提出了基于第四桥臂电流闭环的直接并联三相四桥臂逆变器零序电流控制方法,从而抑制了两组直接并联逆变器第四桥臂中线间的零序环流.仿真和实验结果表明,所提出的控制方法能有效解决直接并联三相四桥臂电压源逆变器间的零序环流控制问题,可为微电网中大功率新能源发电并网逆变器的并机扩容提供技术保障.  相似文献   
6.
针对传统电流检测算法存在的问题,提出了一种基于时域的电流检测算法.采用该算法的并联型有源电力滤波器可抑制谐波、校正功率因数、消除三相不平衡等.着重分析了该算法中各分量对应的物理意义,这对有源电力滤波器容量的选择具有指导意义.根据负载是否平衡,采用不同窗口宽度的滑动窗作为低通滤波器,保证了新的电流检测算法具有良好的检测精度和动态性能.实验结果证明,采用该算法的有源电力滤波器能够满足不同的补偿目的,且具有良好的精度(静态补偿实验时,补偿谐波后电流总畸变率为1 31%)和动态性能(动态补偿实验时,动态过程中电流总畸变率小于4%,且不会引起直流侧电压波动).  相似文献   
7.
三相LCL型并网逆变器的模型分析及解耦控制   总被引:1,自引:0,他引:1  
建立了同步旋转坐标下三相LCL型并网逆变器的平均模型,提出该模型存在的谐振峰问题,并分析了阻尼电阻对系统谐振峰的影响,揭示了该模型的新特性。在同步旋转坐标系下,传统的单闭环控制方案无法实现D轴与Q轴的解耦,针对此问题提出了一种三相LCL型并网逆变器的解耦控制方案。该方案的基本思想是:应用框图等效变换原理,逐步消除每个滤波器元件D轴与Q轴之间的耦合项,并将所有解耦项移至控制器之后,得到系统总的解耦表达式,实现D轴与Q轴的完全解耦。仿真和实验结果表明:与传统的单闭环控制方案相比,提出的控制方法能有效解决D轴与Q轴的耦合问题,实现有功功率与无功功率的独立控制,且系统具有良好的动态响应特性,可为新能源并网逆变器的精准功率控制提供技术保障。  相似文献   
8.
用于三相四线制系统的有源电力滤波器研究   总被引:13,自引:1,他引:12  
为解决在三相四线制电路中使用有源电力滤波器滤除非线性负载的谐波问题,提出采用零线电流分离法来实现有源电力滤波器在三相四线制系统中的应用。仿真及实验结果表明,采用这方法,可以对三相四线制系统中的谐波、负序、零序等电流分量进行补偿,补偿效果良好。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号