首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
教育与普及   4篇
综合类   2篇
  2023年   1篇
  2022年   1篇
  2019年   4篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
魏延泽  王祖民  于然波 《科学通报》2019,64(34):3577-3593
光能的捕获和利用为环境、能源和医学等多个领域的发展提供了广阔的前景.为了实现高效的光能转换,对作为媒介的光功能材料的设计至关重要.作为一种新兴的多级微纳材料,中空多壳层结构(hollow multi-shelled structures, HoMSs)材料在光能转换领域中具有诸多优势,其高效的光捕获能力、增强的光生电荷分离能力和灵活可调的壳壁组成等结构特性都能够有效提高材料对光能的转换效率.本文从HoMSs光功能材料在光能转换过程中的优势出发,总结了其在光催化、太阳能电池和光致发光等光能转换领域中的应用研究进展,并对该领域的发展趋势进行了展望.  相似文献   
2.
柔性电子器件日益流行,给人们的日常生活带来了巨大的变革,同时也激发了柔性储能器件的设计和研制,其中,柔性锂离子电池引起了广泛的关注.为了获得柔性储能器件,首先需要制备柔性电极,即要求在反复变形状态下,电极能够保持优异的力学和电学性能.碳材料具有优异的力学性能和导电性,不仅能够直接制备柔性电极,还能够与活性材料复合,作为基底提供自支撑的导电网络.但是"刚性"的活性材料与"柔性"基底从力学和形态本质上均不匹配,二者的复合、组装、制备方法及其结合强度直接影响电池的电化学性能.本文综述了近年来碳纳米管、碳纳米线、石墨烯、石墨炔及碳布等碳基柔性电极的发展情况,着重分析了自支撑柔性电极的制备方法、结构特征与电化学性能的关系,同时简要总结了目前几种典型结构的柔性锂离子电池,探讨了碳材料柔性电极面临的挑战,并对其未来发展方向进行了展望.  相似文献   
3.
储能技术面向国家能源安全新战略,服务于风、光、水等可再生能源储存、转换及应用领域的国家重大战略需求,是实现“碳中和”“碳达峰”目标的技术核心。近年来,以电储能、热储能、氢储能等为代表的先进储能技术推动着高效储能系统逐步成熟。同时,包括二次电池,超级电容器,熔融盐材料,储氢材料等在内的电化学储能器件和储能材料都得到了迅速发展。 为庆祝北京科技大学成立70周年和其新成立的储能科学与工程系,经协商,由《矿物冶金与材料学报(英文版)》期刊出版“先进储能技术及关键材料”专刊。来自中科院物理所、北京理工大学、北京大学、清华大学、南开大学、上海大学、中科院过程所及北京科技大学等研究机构的顶尖科学家受邀分享他们在电化学储能材料、电化学储能器件及系统等方面的研究和展望;来自加拿大、丹麦和韩国的世界级科学家受邀分享他们在可再生能源制氢、车用燃料电池关键材料及器件等方面的研究和综述。 专刊包括了16篇文章,其中,1篇来自物理所陈立泉院士课题组,1篇来自北京理工大学吴峰院士课题组。所有论文围绕电化学储能和氢能储能的先进材料和器件,包括更高能量密度和更长寿命的材料设计和开发、对相关系统的描述和基本理解、以及电池材料的回收再利用。这些原创作品为了解先进储能材料和技术的最新进展和前沿提供了见解。 北京科技大学新成立的储能科学与工程系以“厚基础、重实践、深融合、强创新”为培养理念、以“电化学储能、先进储能材料、工业储能和智慧储能”为储能科学与工程本科专业特色、以“电储能、热储能、氢储能及碳中和”为储能化学与物理交叉学科博士和硕士学位研究生培养方向,构筑“四纵四横”的储能新格局。储能专业与学科方向致力于规模化基站储能破解可再生能源的“时空转移”、新能源车移动储能推动终端用能去碳化、工业储能破除行业能源壁垒、智慧储能重构我国能源体系。 客座编辑们希望通过本期专刊,为先进储能技术及储能材料提供一个广阔的视角,以期促进化学家、物理学家、材料科学家与交通运输、电力工业和冶金工业等用能企业之间的跨学科合作。我们衷心感谢所有作者和审稿人以及期刊编辑团队对本期特刊的奉献和大力支持。  相似文献   
4.
5.
任浩  于然波 《科学通报》2019,64(34):3546-3561
中空多壳层微、纳米分级结构材料因具有比表面积大、密度小及结构稳定等优点,在多个领域受到广泛关注.二氧化钛(TiO_2)作为一种安全性高、稳定性好的环境友好型半导体材料,被广泛应用于锂离子电池、染料敏化太阳能电池、光催化等领域.在这些领域,中空多壳层结构TiO_2及其复合材料能够利用中空多壳层结构的诸多优点,如优异的结构稳定性能够提升锂离子电池的循环性能,中空多壳层结构对光的多级散射作用能够提高对光的利用率,从而提升太阳能电池及光催化性能.然而,对其实现更精确的控制合成仍然面临挑战.为了实现对优异性能的进一步追求,精细调控中空多壳层结构TiO_2及其复合材料十分重要,但仍少有报道重点对中空多壳层结构TiO_2进行总结.本文首先介绍了TiO_2的基本信息,随后总结了近年来对中空多壳层结构TiO_2及其复合材料在合成方法及应用方面的研究进展,最后对该研究领域进行了总结与展望.通过本文,可以综合了解基于TiO_2的中空多壳层结构材料的合成方法,为实现精细控制合成及性能调控提供参考与方向.  相似文献   
6.
信息时代的迅速发展带来了不可忽视的电磁污染问题,吸波材料在电磁污染、信息安全等领域发挥着重要作用。理想的吸波材料应当具有涂层薄、吸收强、频带宽、机械性能好等优点。BaTiO3属于传统的介电损耗型吸波材料,拥有较高的介电常数,然而吸收强度低、有效频带窄等缺陷限制了其发展应用。通过材料纳微结构的调整以及成分的复合对BaTiO3进行改性处理,是提高材料吸波性能的有效方法。本文旨在开发一种吸收强度高、有效频带宽的BaTiO3基复合吸波材料。以碳质微球为模板,采用次序模板法合成了中空多壳层结构(HoMS)的TiO2微球,经原位水热将TiO2转变为BaTiO3,再通过吡咯蒸气聚合在BaTiO3/TiO2 HoMS壳层上包覆聚吡咯(PPy),成功制备了具有不同壳层数目的复合吸波材料。利用矢量网络分析仪对不同BaTiO3基复合吸波材料的电磁参数进行测试,分析了不同复合结构对材料吸波性能的影响。研究结果表明,包覆了PPy的BaTiO3基复合材料表现出更加优异的吸波性能。其中,三壳层BaTiO3/TiO2@PPy HoMSs的吸波性能最佳,有效吸收频宽达4.20 GHz,在13.34 GHz处反射损失最小,为?21.8 dB,吸波涂层的最佳匹配厚度仅为1.3 mm。中空多壳层结构不仅能够延长电磁波的传输路径,同时为不同损耗机制材料的复合提供了丰富的调控空间,实现了吸波性能的提高。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号