首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20440篇
  免费   1083篇
  国内免费   841篇
系统科学   1666篇
丛书文集   476篇
教育与普及   220篇
理论与方法论   315篇
现状及发展   944篇
研究方法   30篇
综合类   18712篇
自然研究   1篇
  2024年   27篇
  2023年   117篇
  2022年   221篇
  2021年   233篇
  2020年   190篇
  2019年   153篇
  2018年   865篇
  2017年   959篇
  2016年   641篇
  2015年   449篇
  2014年   579篇
  2013年   660篇
  2012年   982篇
  2011年   1809篇
  2010年   1619篇
  2009年   1402篇
  2008年   1565篇
  2007年   1813篇
  2006年   940篇
  2005年   799篇
  2004年   793篇
  2003年   839篇
  2002年   850篇
  2001年   693篇
  2000年   561篇
  1999年   500篇
  1998年   282篇
  1997年   305篇
  1996年   287篇
  1995年   243篇
  1994年   222篇
  1993年   158篇
  1992年   151篇
  1991年   118篇
  1990年   108篇
  1989年   83篇
  1988年   73篇
  1987年   40篇
  1986年   18篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1967年   1篇
  1955年   3篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
1.
设计了一种新型低Ni经济型双相不锈钢,通过金相显微镜、X射线衍射仪和扫描电子显微镜对不同固溶温度处理后的试样进行表征,通过常规拉伸实验得到综合力学性能最佳的热处理温度点,并通过电化学预充氢后的慢应变速率拉伸实验探究了其氢脆敏感性能。实验表明,随着温度的升高,奥氏体体积分数明显下降,铁素体体积分数升高,氢在双相不锈钢中的扩散能力提高。在1 050 ℃下固溶处理5 min后水淬的经济型双相不锈钢(lean duplex stainless steel,LDSS)综合性能最佳,其屈服强度和抗拉强度分别为744.7 MPa和807.7 MPa,总伸长率为62%,并且该材料在不同温度都具有优异的加工硬化性能。通过对1 050 ℃热处理后的试样进行不同电流密度和时间的预充氢处理,发现其氢脆敏感性能受充氢时间影响大于充氢电流,氢原子主要在塑性变形阶段降低材料抗拉强度和伸长率,对屈服强度影响较小。  相似文献   
2.
目的 分析产后早期肛提肌裂孔扩张的影响因素.方法 盆底超声测量产后早期女性肛提肌裂孔面积,其中研究组为105名肛提肌裂孔扩张者,对照组为145名肛提肌裂孔正常者,对肛提肌裂孔扩张的相关因素进行二元Logistic回归分析.结果 研究组中盆底疾病的发生率高于对照组(P<0.05),Logistic回归分析显示第二产程时间、胎儿体重、催产素使用和盆腔器官脱垂与肛提肌裂孔扩张显著相关(P<0.05).结论 第二产程时间延长、催产素增加和胎儿体重增加是肛提肌裂孔扩张的影响因素,对预测和精确诊断盆底疾病有临床意义.  相似文献   
3.
4.
The NLRP3 inflammasome is a critical innate immune pathway responsible for producing active interleukin (IL)-1β, which is associated with tumor development and immunity. However, the mechanisms regulating the inflammatory microenvironment, tumorigenesis and tumor immunity are unclear. Herein, we show that the NLRP3 inflammasome was over-expressed in human HNSCC tissues and that the IL-1β concentration was increased in the peripheral blood of HNSCC patients. Additionally, elevated NLRP3 inflammasome levels were detected in tumor tissues of Tgfbr1/Pten 2cKO HNSCC mice, and elevated IL-1β levels were detected in the peripheral blood serum, spleen, draining lymph nodes and tumor tissues. Blocking NLRP3 inflammasome activation using MCC950 remarkably reduced IL-1β production in an HNSCC mouse model and reduced the numbers of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) and tumor-associated macrophages (TAMs). Moreover, inhibiting NLRP3 inflammasome activation increased the numbers of CD4+ and CD8+ T cells in HNSCC mice. Notably, the numbers of exhausted PD-1+ and Tim3+ T cells were significantly reduced. A human HNSCC tissue microarray showed that NLRP3 inflammasome expression was correlated with the expression of CD8 and CD4, the Treg marker Foxp3, the MDSC markers CD11b and CD33, and the TAM markers CD68 and CD163, PD-1 and Tim3. Overall, our results demonstrate that the NLRP3 inflammasome/IL-1β pathway promotes tumorigenesis in HNSCC and inactivation of this pathway delays tumor growth, accompanied by decreased immunosuppressive cell accumulation and an increased number of effector T cells. Thus, inhibition of the tumor microenvironment through the NLRP3 inflammasome/IL-1β pathway may provide a novel approach for HNSCC therapy.  相似文献   
5.
Gastric cancer is one of the most aggressive malignancies, with limited treatment options in both locally advanced and metastatic setting, resulting in poor prognosis. Based on genomic characterization, stomach tumour has recently been described as a heterogeneous disease composed by different subtypes, each of them with peculiar molecular aspects and specific clinical behaviour. With an incidence of 22% among all western gastric tumour cases, stomach cancer with microsatellite instability was identified as one of these subgroups. Retrospective studies and limited prospective trials reported differences between gastric cancers with microsatellite stability and those with instability, mainly concerning clinical and pathological features, but also in regard to immunological microenvironment, correlation with prognostic value, and responses to treatment. In particular, gastric cancer with microsatellite instability constitutes a small but relevant subgroup associated with older age, female sex, distal stomach location, and lower number of lymph-node metastases. Emerging data attribute to microsatellite instability status a favourable prognostic meaning, whereas the poor outcomes reported after perioperative chemotherapy administration suggest a detrimental role of cytotoxic drugs in this gastric cancer subgroup. The strong immunogenicity and the widespread expression of immune-checkpoint ligands make microsatellite instability subtype more vulnerable to immunotherapeutic approach, e.g., with anti-PD-L1 and anti-CTLA4 antibodies. Since gastric cancer with microsatellite instability shows specific features and clinical behaviour not overlapping with microsatellite stable disease, microsatellite instability test might be suitable for inclusion in a diagnostic setting for all tumour stages to guarantee the most targeted and effective treatment to every patient.  相似文献   
6.
以205/55R16乘用车轮胎为研究对象,采用计算流体动力学建立了考虑胎面花纹变形的轮胎滑水分析模型;以气-液二相流数值模型分析了轮胎的滑水性能,并将临界滑水速度仿真值与NASA滑水速度预测值及轮胎发生滑水时力平衡下的速度进行对比.在此基础上,引入仿生减阻理念,研究了夹角为60°、高度为0.6mm的仿生对称V形结构对花纹沟排水量和水流阻力的影响,并将其结构特征信息等效移植到接地区轮胎花纹沟底,进行了仿生花纹轮胎的滑水性能分析.结果表明:所建滑水分析模型可用来分析轮胎滑水时的流体运动特性;相对原花纹轮胎,仿生非光滑花纹沟轮胎通过提高接地区花纹沟内水流速度,降低了胎面动水压力,提高了临界滑水速度.  相似文献   
7.
Plants often encounter unfavorable environmental conditions because of their sessile lifestyle. These adverse factors greatly affect the geographic distribution of plants, as well as their growth and productivity. Drought stress is one of the premier limitations to global agricultural production due to the complexity of the water-limiting environment and changing climate. Plants have evolved a series of mechanisms at the morphological, physiological, biochemical, cellular, and molecular levels to overcome water deficit or drought stress conditions. The drought resistance of plants can be divided into four basic types-drought avoidance, drought tolerance, drought escape, and drought recovery. Various drought-related traits, including root traits, leaf traits, osmotic adjustment capabilities, water potential, ABA content, and stability of the cell membrane, have been used as indicators to evaluate the drought resistance of plants. In the last decade, scientists have investigated the genetic and molecular mechanisms of drought resistance to enhance the drought resistance of various crops, and significant progress has been made with regard to drought avoidance and drought tolerance. With increasing knowledge to comprehensively decipher the complicated mechanisms of drought resistance in model plants, it still remains an enormous challenge to develop water-saving and drought-resistant crops to cope with the water shortage and increasing demand for food production in the future.  相似文献   
8.
Cell adhesion molecules (CAMs) of the immunoglobulin superfamily (IgSF) regulate important processes such as cell proliferation, differentiation and morphogenesis. This activity is primarily due to their ability to initiate intracellular signaling cascades at cell–cell contact sites. Junctional adhesion molecule-A (JAM-A) is an IgSF-CAM with a short cytoplasmic tail that has no catalytic activity. Nevertheless, JAM-A is involved in a variety of biological processes. The functional diversity of JAM-A resides to a large part in a C-terminal PDZ domain binding motif which directly interacts with nine different PDZ domain-containing proteins. The molecular promiscuity of its PDZ domain motif allows JAM-A to recruit protein scaffolds to specific sites of cell–cell adhesion and to assemble signaling complexes at those sites. Here, we review the molecular characteristics of JAM-A, including its dimerization, its interaction with scaffolding proteins, and the phosphorylation of its cytoplasmic domain, and we describe how these characteristics translate into diverse biological activities.  相似文献   
9.
Current knowledge on exosome biogenesis and release   总被引:1,自引:1,他引:0  
Exosomes are nanosized membrane vesicles released by fusion of an organelle of the endocytic pathway, the multivesicular body, with the plasma membrane. This process was discovered more than 30 years ago, and during these years, exosomes have gone from being considered as cellular waste disposal to mediate a novel mechanism of cell-to-cell communication. The exponential interest in exosomes experienced during recent years is due to their important roles in health and disease and to their potential clinical application in therapy and diagnosis. However, important aspects of the biology of exosomes remain unknown. To explore the use of exosomes in the clinic, it is essential that the basic molecular mechanisms behind the transport and function of these vesicles are better understood. We have here summarized what is presently known about how exosomes are formed and released by cells. Moreover, other cellular processes related to exosome biogenesis and release, such as autophagy and lysosomal exocytosis are presented. Finally, methodological aspects related to exosome release studies are discussed.  相似文献   
10.

Introduction

Islets synthesise and secrete numerous peptides, some of which are known to be important regulators of islet function and glucose homeostasis. In this study, we quantified mRNAs encoding all peptide ligands of islet G protein-coupled receptors (GPCRs) in isolated human and mouse islets and carried out in vitro islet hormone secretion studies to provide functional confirmation for the species-specific role of peptide YY (PYY) in mouse islets.

Materials and methods

GPCR peptide ligand mRNAs in human and mouse islets were quantified by quantitative real-time PCR relative to the reference genes ACTB, GAPDH, PPIA, TBP and TFRC. The pathways connecting GPCR peptide ligands with their receptors were identified by manual searches in the PubMed, IUPHAR and Ingenuity databases. Distribution of PYY protein in mouse and human islets was determined by immunohistochemistry. Insulin, glucagon and somatostatin secretion from islets was measured by radioimmunoassay.

Results

We have quantified GPCR peptide ligand mRNA expression in human and mouse islets and created specific signalomes mapping the pathways by which islet peptide ligands regulate human and mouse GPCR signalling. We also identified species-specific islet expression of several GPCR ligands. In particular, PYY mRNA levels were ~ 40,000-fold higher in mouse than human islets, suggesting a more important role of locally secreted Pyy in mouse islets. This was confirmed by IHC and functional experiments measuring insulin, glucagon and somatostatin secretion.

Discussion

The detailed human and mouse islet GPCR peptide ligand atlases will allow accurate translation of mouse islet functional studies for the identification of GPCR/peptide signalling pathways relevant for human physiology, which may lead to novel treatment modalities of diabetes and metabolic disease.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号