首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
研究方法   7篇
综合类   23篇
  2020年   1篇
  2012年   6篇
  2011年   4篇
  2008年   5篇
  2007年   5篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
小拟南芥几丁质酶基因cDNA的克隆与序列分析   总被引:1,自引:0,他引:1  
通过合成1对特异引物,应用RT-PCR技术从小拟南芥总RNA中经反转录克隆出几丁质酶基因,该cDNA基因全长985bp,含有1个963bp的开放阅读框(ORF),编码321个氨基酸,推测分子量为35.53kD,序列同源性分析表明,该基因与拟南芥几丁质酶基因有93%的同源性。  相似文献   
2.
3.
Genome sequence and analysis of the tuber crop potato   总被引:11,自引:0,他引:11  
Potato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop.  相似文献   
4.
Analysis of the genome sequence of the flowering plant Arabidopsis thaliana   总被引:16,自引:0,他引:16  
The flowering plant Arabidopsis thaliana is an important model system for identifying genes and determining their functions. Here we report the analysis of the genomic sequence of Arabidopsis. The sequenced regions cover 115.4 megabases of the 125-megabase genome and extend into centromeric regions. The evolution of Arabidopsis involved a whole-genome duplication, followed by subsequent gene loss and extensive local gene duplications, giving rise to a dynamic genome enriched by lateral gene transfer from a cyanobacterial-like ancestor of the plastid. The genome contains 25,498 genes encoding proteins from 11,000 families, similar to the functional diversity of Drosophila and Caenorhabditis elegans--the other sequenced multicellular eukaryotes. Arabidopsis has many families of new proteins but also lacks several common protein families, indicating that the sets of common proteins have undergone differential expansion and contraction in the three multicellular eukaryotes. This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.  相似文献   
5.
To identify somatic mutations in pediatric diffuse intrinsic pontine glioma (DIPG), we performed whole-genome sequencing of DNA from seven DIPGs and matched germline tissue and targeted sequencing of an additional 43 DIPGs and 36 non-brainstem pediatric glioblastomas (non-BS-PGs). We found that 78% of DIPGs and 22% of non-BS-PGs contained a mutation in H3F3A, encoding histone H3.3, or in the related HIST1H3B, encoding histone H3.1, that caused a p.Lys27Met amino acid substitution in each protein. An additional 14% of non-BS-PGs had somatic mutations in H3F3A causing a p.Gly34Arg alteration.  相似文献   
6.
【目的】回顾近些年来在蜜蜂基因组研究领域取得的进展,为后续进一步研究提供参考。【方法】检索蜜蜂高通量测序相关文献并归纳总结,获得高通量测序在蜜蜂基因组中的应用和研究进展。【结果】高通量测序主要应用于蜜蜂线粒体基因组、核基因组和转录组3个方面。目前,蜜蜂属(Apis)下所有9个种的线粒体基因组以及6个种的全基因组已被获得。基于转录组测序分析,一些与蜜蜂重要性状相关的候选基因被靶定。【结论】高通量测序技术的快速发展,使得该技术在蜜蜂基因组学的研究应用范围不断扩大、应用深度不断加深。这为研究蜜蜂分类、系统演化、群体遗传、亲缘关系、群体历史等提供了重要的数据支撑,也为进一步筛选和利用关键基因提供了理论支持。  相似文献   
7.
Height is a classic polygenic trait, reflecting the combined influence of multiple as-yet-undiscovered genetic factors. We carried out a meta-analysis of genome-wide association study data of height from 15,821 individuals at 2.2 million SNPs, and followed up the strongest findings in >10,000 subjects. Ten newly identified and two previously reported loci were strongly associated with variation in height (P values from 4 x 10(-7) to 8 x 10(-22)). Together, these 12 loci account for approximately 2% of the population variation in height. Individuals with < or =8 height-increasing alleles and > or =16 height-increasing alleles differ in height by approximately 3.5 cm. The newly identified loci, along with several additional loci with strongly suggestive associations, encompass both strong biological candidates and unexpected genes, and highlight several pathways (let-7 targets, chromatin remodeling proteins and Hedgehog signaling) as important regulators of human stature. These results expand the picture of the biological regulation of human height and of the genetic architecture of this classical complex trait.  相似文献   
8.
9.
Finishing the euchromatic sequence of the human genome   总被引:3,自引:0,他引:3  
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers approximately 99% of the euchromatic genome and is accurate to an error rate of approximately 1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human genome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead.  相似文献   
10.
Human height is a classic, highly heritable quantitative trait. To begin to identify genetic variants influencing height, we examined genome-wide association data from 4,921 individuals. Common variants in the HMGA2 oncogene, exemplified by rs1042725, were associated with height (P = 4 x 10(-8)). HMGA2 is also a strong biological candidate for height, as rare, severe mutations in this gene alter body size in mice and humans, so we tested rs1042725 in additional samples. We confirmed the association in 19,064 adults from four further studies (P = 3 x 10(-11), overall P = 4 x 10(-16), including the genome-wide association data). We also observed the association in children (P = 1 x 10(-6), N = 6,827) and a tall/short case-control study (P = 4 x 10(-6), N = 3,207). We estimate that rs1042725 explains approximately 0.3% of population variation in height (approximately 0.4 cm increased adult height per C allele). There are few examples of common genetic variants reproducibly associated with human quantitativetraits; these results represent, to our knowledge, the first consistently replicated association with adult and childhood height.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号