首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4712篇
  免费   266篇
  国内免费   301篇
系统科学   331篇
丛书文集   124篇
教育与普及   22篇
理论与方法论   8篇
现状及发展   23篇
综合类   4764篇
自然研究   7篇
  2024年   14篇
  2023年   33篇
  2022年   56篇
  2021年   76篇
  2020年   103篇
  2019年   89篇
  2018年   77篇
  2017年   110篇
  2016年   136篇
  2015年   145篇
  2014年   213篇
  2013年   196篇
  2012年   250篇
  2011年   258篇
  2010年   213篇
  2009年   231篇
  2008年   222篇
  2007年   300篇
  2006年   286篇
  2005年   207篇
  2004年   250篇
  2003年   188篇
  2002年   195篇
  2001年   164篇
  2000年   161篇
  1999年   158篇
  1998年   117篇
  1997年   127篇
  1996年   94篇
  1995年   84篇
  1994年   81篇
  1993年   68篇
  1992年   78篇
  1991年   69篇
  1990年   60篇
  1989年   60篇
  1988年   60篇
  1987年   27篇
  1986年   17篇
  1985年   4篇
  1984年   1篇
  1955年   1篇
排序方式: 共有5279条查询结果,搜索用时 15 毫秒
1.
在基于到达角(angle of arrival, AoA)的三维目标跟踪中, 伪线性卡尔曼滤波具有稳定性高和计算复杂度低的优点, 但是严重的偏差问题使其跟踪精度迅速下降。针对该问题, 提出一种二次约束卡尔曼滤波(quadratic constraint Kalman filter, QCKF)算法。首先引入涉及所有观测噪声项的增广矩阵, 然后建立与线性卡尔曼滤波等价的目标函数并且附加含有二次项的约束条件, 以此降低偏差影响, 实现更准确的状态更新。QCKF算法采用广义特征值分解求解约束优化问题, 无法直接通过状态更新表达式推导其协方差矩阵, 因此利用约束条件以及矩阵扰动方法完成协方差矩阵更新。仿真分析表明, QCKF算法相较于其他非线性滤波算法具有更优的跟踪性能, 不仅在低噪声条件下可达到后验克拉美罗下界, 而且当噪声严重时能够显著降低跟踪误差, 并且计算开销不高。  相似文献   
2.
通过实例说明相关文献中加型一致性模糊判断矩阵排序方法的参数取值存在的问题,分析出该问题是由于其公式证明中没有区分标度导致的,指出其结论适用于0~1标度的加型一致性模糊判断矩阵.然后,重新证明了0.1~0.9标度下的加型一致性模糊判决矩阵的排序方法和相关结论.最后,定义了广义模糊标度,并给出广义模糊标度下加型一致性模糊判断矩阵的排序方法和相关结论,使得相关文献中排序方法和相关结论实现形式上的统一.  相似文献   
3.
 时间和空间存在,尺度存在,生态学实验对象的时空尺度(本体论意义上的,又叫“本征尺度”)也存在。对生态学实验对象的时空尺度认识的基本原则是让“生态学实验对象的时空操作尺度”(方法论意义上的,又叫“表征尺度”)与生态学实验对象的时空尺度相契合(认识论意义上的)。这是生态学实验时空尺度关联实在论。在具体的生态学实验过程中,有些生态学家或坚持生态学实验对象的时空尺度不存在,或坚持其虽然存在但是不可认识,从而走向工具论和经验建构论(反实在论)。这种立场与生态学认识的基本宗旨--认识自然界中存在的生物与环境之间的关系相违背,应该抛弃。而且,某些生态学家或出于生态学实验对象的时空尺度本身认识的困难,或出于“不发表便出局”及其他原因,一是将生态学实验对象的时空尺度之时空简化为牛顿的绝对时空观,而没有考虑爱因斯坦的相对论时空观、普里戈金的“内时间”乃至引伸出来的“内空间”时空观,以及莱布尼兹的关系“空间观”乃至引伸出来的关系“时间观”,二是没有选择恰当的“粒度”和“幅度”进行实验,造成“用度失当”之误,三是没有进行充分的多尺度分析,造成“聚集偏差”,四是没有建构合适的模型,造成“鼠夹捕象”现象,五是没有正确识别“特征尺度”,造成“生态学谬误”。生态学实验者应针对上述不足,坚持正确的时空观,采取各种措施,以获得对生态学实验对象尺度的正确认识。  相似文献   
4.
雷达在大入射余角高分辨率海杂波背景下检测时,等效后向散射面积增大,大部分海杂波能量投射到少数距离单元,能量分布不均,出现功率突然增大的杂波“异常单元”,导致检测器参考窗口所处的背景环境复杂多变,传统检测器检测概率降低,虚警率及误检率增加。为解决此问题,通过参考滑窗单元的协方差矩阵构造正定矩阵,求解其矩阵范数用以估计杂波功率水平,并采用支持向量机改进传统恒虚警率(constant false alarm rate,CFAR)检测器,得到基于正定矩阵杂波功率估计训练支持向量机的改进CFAR检测器。实验结果表明,新检测器在均匀杂波、多目标环境下检测性能稳定,在杂波边缘的虚警控制能力良好。  相似文献   
5.
当单脉冲雷达受到箔条质心干扰时, 将视为波束内存在两个不可分辨的目标, 由于目标和箔条干扰回波混叠耦合, 导致单脉冲测角偏差, 最终致使目标跟踪丢失。对此, 利用宽带单脉冲雷达测角精度高的优点和极化信息, 提出一种基于极化单脉冲雷达的扩展目标角度估计方法。首先,分析宽带单脉冲雷达体制下箔条质心干扰的特点, 给出扩展目标双极化和差信号模型。然后, 根据和、差通道极化回波信号, 通过联立方程组, 估计出目标和箔条干扰的到达角(angle of arrival, AOA), 为后续利用目标角度信息跟踪目标提供条件。最后,通过蒙特卡罗仿真实验分析关键参数对目标角度估计性能的影响, 并与传统单脉冲雷达体制的测角方法进行比较。理论分析和仿真实验表明, 在质心干扰条件下, 宽带单脉冲雷达估计目标AOA的性能要优于传统单脉冲雷达。  相似文献   
6.
油田注水开发导致采出液的含水量逐年增加,部分区块采出液水体结垢导致集输管线堵塞等各种问题日益严重。根据耿83区高含钡锶离子的特点,分别采用常规水分析方法、原子吸收光谱法和等离子体原子发射光谱法测试采出水和注入水的水样离子组成成分、水样矿化度、水型等。实验结果表明,在高矿化度含多种阳离子的水溶液中,原子吸收光谱法测试结果更准确。采用原子吸收光谱法对该区块结垢特征系统分析,计算结垢理论值,得出主要为硫酸钡和硫酸锶垢型。将现场垢样通过能谱和扫描电镜分析,验证得到与水样分析出的垢体一致。该方法能准确判定出垢体和垢型,为进一步采取有效的防垢、清垢措施提供重要的依据。  相似文献   
7.
提出一种面向大规模数据的特征趋势推理算法. 首先, 采用Hash函数抽取大规模数据样本, 使用Pam聚类算法和并行K means聚类算法对大规模数据样本进行聚类, 获取最佳聚类结果后, 提取大规模数据聚类的动态特征; 其次, 采用基于特征趋势规则的推理算法, 构建大规模数据特征的趋势规则推理模型, 并通过累计趋势规则方法设计趋势规则算法, 推理大规模数据特征趋势, 解决了推理结果误差较大的问题. 实验结果表明, 该算法对大规模数据特征趋势推理的准确率均值为98.10%, 推理速度增长率为50%, 推理耗时最大均值仅为114.25 s, 能快速准确地完成数据特征趋势推理.  相似文献   
8.
针对快速图像特征区域检测受噪声干扰和尺度空间影响, 导致图像特征区域检测精度较低、 延时较长, 检测结果不可靠的问题, 提出一种基于尺度不变特征变换的快速图像特征区域检测方法. 先通过加权核函数, 加权平滑处理图像中各像素点, 实现图像去噪; 再在此基础上通过构建图像高斯尺度空间确定图像特征点区域, 删除低对比度像素点和边缘像素点, 快速提取图像特征点, 检测特征点所在区域即为图像特征区域. 仿真实验结果表明, 该方法能高效率、高精度地实现快速图像特征区域检测的全面检测.  相似文献   
9.
针对复杂装备故障呈现出多重性、相关性及模糊性的特点,本文分析了装备健康状态演化规律,利用自适应模糊神经网络、故障模式、影响及危害性分析构建故障风险标尺,实现了对复杂装备故障风险程度的定量化描述及装备健康状态的分类。通过实验分析,本文提出的模型相比于传统的故障预测以及故障风险程度定量方法具有显著优势,实现了对装备从设计生产、部署使用以及退役报废全寿命周期的动态反馈,对提高复杂装备综合保障能力具有重要意义。  相似文献   
10.
向华  周伟峰 《系统管理学报》2020,29(5):1018-1024
研究了融资约束模式下的中小企业投资时机和融资规模。利用风险中性定价方法给出了公司债券、股权、公司价值和担保成本定价的显式解;确定了投资时机与债务规模的函数关系;解释了担保换股权融资模式的优势。数值分析结果表明:投资触发水平随融资规模先减后增呈U型变化;被担保的公司价值大于股权融资的公司价值。随着风险的增大,两价值之差越来越小。比较静态分析也表明,担保换股权使得公司价值增加,投资被加速。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号