首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Angiogenesis, the formation of new blood vessels from pre-existing vessels, in the central nervous system (CNS) is seen both as a normal physiological response as well as a pathological step in disease progression. Formation of the blood–brain barrier (BBB) is an essential step in physiological CNS angiogenesis. The BBB is regulated by a neurovascular unit (NVU) consisting of endothelial and perivascular cells as well as vascular astrocytes. The NVU plays a critical role in preventing entry of neurotoxic substances and regulation of blood flow in the CNS. In recent years, research on numerous acquired and hereditary disorders of the CNS has increasingly emphasized the role of angiogenesis in disease pathophysiology. Here, we discuss molecular mechanisms of CNS angiogenesis during embryogenesis as well as various pathological states including brain tumor formation, ischemic stroke, arteriovenous malformations, and neurodegenerative diseases.  相似文献   

3.
Multiple sclerosis (MS) is a major chronic demyelinating and inflammatory disease of the central nervous system (CNS) in which oxidative stress likely plays a pathogenic role in the development of myelin and neuronal damage. Metallothioneins (MTs) are antioxidant proteins induced in the CNS by tissue injury, stress and some neurodegenerative diseases, which have been postulated to play a neuroprotective role. In fact, MT-I+II-deficient mice are more susceptible to developing experimental autoimmune encephalomyelitis (EAE), and treatment of Lewis rats with Zn-MT-II reduces EAE severity. We show here that, as in EAE, MT-I+II proteins were expressed in brain lesions of MS patients. Cells expressing MT-I+II were mainly astrocytes and activated monocytes/macrophages. Interestingly, the levels of MT-I+II were slightly increased in the inactive MS lesions in comparison with the active lesions, suggesting that MTs may be important in disease remission.  相似文献   

4.
It is now relatively well accepted that the cerebrovascular system does not merely provide inert pipes for blood delivery to the brain. Cerebral endothelial cells may compose an embedded bunker of trophic factors that contribute to brain homeostasis and function. Recent findings suggest that soluble factors from cerebral endothelial cells nourish neighboring cells, such as neurons and astrocytes. Although data are strongest in supporting mechanisms of endothelial-neuron and/or endothelial-astrocyte trophic coupling, it is likely that similar interactions also exist between cerebral endothelial cells and oligodendrocyte lineage cells. In this mini-review, we summarize current advances in the field of endothelial-oligodendrocyte trophic coupling. These endothelial-oligodendrocyte interactions may comprise the oligovascular niche to maintain their cellular functions and sustain ongoing angiogenesis/oligodendrogenesis. Importantly, it should be noted that the cell–cell interactions are not static—the trophic coupling is disturbed under acute phase after brain injury, but would be recovered in the chronic phase to promote brain remodeling and repair. Oligodendrocyte lineage cells play critical roles in white matter function, and under pathological conditions, oligodendrocyte dysfunction lead to white matter damage. Therefore, a deeper understanding of the mechanisms of endothelial-oligodendrocyte trophic coupling may lead to new therapeutic approaches for white matter-related diseases, such as stroke or vascular dementia.  相似文献   

5.
6.
Astrocytic activation is a cellular response to disturbances of the central nervous system (CNS). Recent advances in cellular and molecular biology have demonstrated the remarkable changes in molecular signaling, morphology, and metabolism that occur during astrocyte activation. Based on these studies, it has become clear that the astrocyte activation process is regulated by a variety of signaling pathways, which result in metabolic support, wound healing and scar formation. While normal astrocyte activation pathways drive homeostasis and/or repair in the CNS, dysregulation of these pathways can lead to astrocyte abnormalities, including glioma formation with similar phenotypes as reactive astrocytes. We review the principle pathways responsible for astrocytic activation, as well as their potential contribution to tumor formation in the CNS.  相似文献   

7.
在手术、创伤、应激等因素所致的炎症中,细胞因子起着重要作用。炎性细胞因子产生和释放过多,破坏了致炎因子和抗炎因子的平衡,从而引起炎症反应。适当的炎症反应可以起到抵抗损伤和修复创伤等防御作用;过度的炎症可致手术后感染、组织修复不良甚至诱发机体感染性休克和多器官功能障碍综合征(MODS)。常用全麻药对细胞因子具有一定的影响和潜在的调节作用,越来越受到麻醉医生的重视。本文就近几年的研究现状作一综述。  相似文献   

8.
Investigations into mechanisms that restrict the recovery of functions after an injury to the brain or the spinal cord have led to the discovery of specific neurite growth inhibitory factors in the adult central nervous system (CNS) of mammals. Blocking their growth-suppressive function resulted in disinhibition of axonal growth, i.e. growth of cultured neurons on inhibitory CNS tissue in vitro and regeneration of injured axons in vivo. The enhanced regenerative and compensatory fibre growth was often accompanied by a substantial improvement in the functional recovery after CNS injury. The first clinical studies to assess the therapeutic potential of compounds that neutralize growth inhibitors or interfere with their downstream signalling are currently in progress. This review discusses recent advances in the understanding of how the ‘founder molecule’ Nogo-A and other glialderived growth inhibitors restrict the regeneration and repair of disrupted neuronal circuits, thus limiting the functional recovery after CNS injuries. Received 5 April 2007; received after revision 28 September 2007; accepted 1 October 2007  相似文献   

9.
Natural killer (NK) cells are innate lymphocytes involved in immunosurveillance through their cytotoxic activity and their capacity to secrete inflammatory cytokines. NK cell activation is necessary to initiate effector functions and results from a complex series of molecular and cellular events. We review here the signals that trigger NK cells and discuss recent findings showing that, besides antigen-presenting cells, T cells can play a central role in the initiation of NK cell activation in lymph nodes.  相似文献   

10.
The role of inflammation in sporadic and familial Parkinson’s disease   总被引:1,自引:1,他引:0  
The etiology of Parkinson’s disease (PD) is complex and most likely involves numerous environmental and heritable risk factors. Interestingly, many genetic variants, which have been linked to familial forms of PD or identified as strong risk factors, also play a critical role in modulating inflammatory responses. There has been considerable debate in the field as to whether inflammation is a driving force in neurodegeneration or simply represents a response to neuronal death. One emerging hypothesis is that inflammation plays a critical role in the early phases of neurodegeneration. In this review, we will discuss emerging aspects of both innate and adaptive immunity in the context of the pathogenesis of PD. We will highlight recent data from genetic and functional studies that strongly support the theory that genetic susceptibility plays an important role in modulating immune pathways and inflammatory reactions, which may precede and initiate neuronal dysfunction and subsequent neurodegeneration. A detailed understanding of such cellular and molecular inflammatory pathways is crucial to uncover pathogenic mechanisms linking sporadic and hereditary PD and devise tailored neuroprotective interventions.  相似文献   

11.
Accumulating findings indicate that nucleotides play an important role in microglia through P2 purinoceptors. P2 purinoceptors are divided into two families, ionotropic receptors (P2X) and metabotropic receptors (P2Y). P2X receptors (7 types; P2X1 – P2X7) contain intrinsic pores that open by binding with ATP. P2Y receptors (8 types; P2Y1, 2, 4, 6, 11, 12, 13 and 14) are activated by nucleotides and couple to intracellular second-messenger systems through heteromeric G-proteins. Nucleotides are released or leaked from non-excitable cells as well as neurons in physiological and pathophysiological conditions. Microglia express many types of P2 purinoceptors and are known as resident macrophages in the CNS. ATP and other nucleotides work as ‘warning molecules’ especially through activating microglia in pathophysiological conditions. Microglia play a key role in neuropathic pain, chemotaxis and phagocytosis through nucleotide-evoked activation of P2X4, P2Y12 and P2Y6 receptors, respectively. These findings indicate that extracellular nucleotides are important players in the central stage of microglial function. Received 19 April 2008; received after revision 20 May 2008; accepted 23 May 2008  相似文献   

12.
13.
Olfactory ensheathing cells have been used in several studies to promote repair in the injured spinal cord. However, cellular interaction between olfactory ensheathing cells and glial cells induced to be reactive in the aftermath of injury site has not been investigated. Using an in vitro model of astrogliosis, we show that reactive astrocytes expressed significantly less glial fibrillary acidic protein (GFAP) when cultured both in direct contact with olfactory ensheathing cells and when the two cell types were separated by a porous membrane. Immunofluorescence staining also suggested that reactive astrocytes showed decreased chondroitin sulfate proteoglycans in the presence of olfactory ensheathing cells, although the reduction was not statistically significant. No down-regulation of GFAP was observed when reactive astrocytes were similarly cultured with Schwann cells. Cell viability assay and bromodeoxyuridine uptake showed that proliferation of reactive astrocytes was significantly increased in the presence of olfactory ensheathing cells and Schwann cells. Received 27 February 2007; received after revision 30 March 2007; accepted 3 April 2007  相似文献   

14.
Alkyltransferase-like proteins (ATLs) play a role in the protection of cells from the biological effects of DNA alkylation damage. Although ATLs share functional motifs with the DNA repair protein and cancer chemotherapy target O 6-alkylguanine-DNA alkyltransferase, they lack the reactive cysteine residue required for alkyltransferase activity, so its mechanism for cell protection was previously unknown. Here we review recent advances in unraveling the enigmatic cellular protection provided by ATLs against the deleterious effects of DNA alkylation damage. We discuss exciting new evidence that ATLs aid in the repair of DNA O 6-alkylguanine lesions through a novel repair cross-talk between DNA-alkylation base damage responses and the DNA nucleotide excision repair pathway.  相似文献   

15.
The active role of astrocytes in synaptic transmission   总被引:7,自引:0,他引:7  
In the central nervous system, astrocytes form an intimately connected network with neurons, and their processes closely enwrap synapses. The critical role of these cells in metabolic and trophic support to neurons, ion buffering and clearance of neurotransmitters is well established. However, recent accumulating evidence suggests that astrocytes are active partners of neurons in additional and more complex functions. In particular, astrocytes express a repertoire of neurotransmitter receptors mirroring that of neighbouring synapses. Such receptors are stimulated during synaptic activity and start calcium signalling into the astrocyte network. Intracellular oscillations and intercellular calcium waves represent the astrocyte's own form of excitability, as they trigger release of transmitter (i.e. glutamate) via a novel process sensitive to blockers of exocytosis and involving cyclooxygenase eicosanoids. Astrocyte-released glutamate activates receptors on the surrounding neurons and modifies their electrical and intracellular calcium ([Ca2+]i) state. These exciting new findings reveal an active participation of astrocytes in synaptic transmission and the involvement of neuronastrocyte circuits in the processing of information in the brain.  相似文献   

16.
17.
Neurotrophic factors are present in limiting quantities, and neurons that obtain an adequate supply of the required neurotrophic factor survive whereas those that compete unsuccessfully die. Analysis of null mutant mice for neurotrophins and Trk receptors as well as in vivo experiments in ovo in the chick applying exogenous neurotrophins or neutralising antisera have significantly increased knowledge of the roles they play during development. This review focuses on recent advances in understanding the various roles of neurotrophins in dorsal root ganglion sensory neuron development at different times in embryonic development - an early local role for differentiation of the sensory precursor cells and a later survival-promoting target-derived role for the mature neurons. Neurotrophic factors are present in limiting quantities, and neurons that obtain an adequate supply of the required neurotrophic factor survive whereas those that compete unsuccessfully die. Analysis of null mutant mice for neurotrophins and Trk receptors as well as in vivo experiments in ovo in the chick applying exogenous neurotrophins or neutralising antisera have significantly increased knowledge of the roles they play during development. This review focuses on recent advances in understanding the various roles of neurotrophins in dorsal root ganglion sensory neuron development at different times in embryonic development - an early local role for differentiation of the sensory precursor cells and a later survival-promoting target-derived role for the mature neurons.  相似文献   

18.
19.
Treatment of chronic disorders affecting the central nervous system (CNS) is complicated by the inability of drugs to cross the blood–brain barrier (BBB). Non-viral gene therapy applied to brain capillary endothelial cells (BCECs) denotes a novel approach to overcome the restraints in this passage, as turning BCECs into recombinant protein factories by transfection could result in protein secretion further into the brain. The present study aims to investigate the possibility of transfecting primary rat brain endothelial cells (RBECs) for recombinant protein synthesis and secretion of the neuroprotective protein erythropoietin (EPO). We previously showed that 4% of RBECs with BBB properties can be transfected without disrupting the BBB integrity in vitro, but it can be questioned whether this is sufficient to enable protein secretion at therapeutic levels. The present study examined various transfection vectors, with regard to increasing the transfection efficiency without disrupting the BBB integrity. Lipofectamine 3000? was the most potent vector compared to polyethylenimine (PEI) and Turbofect. When co-cultured with astrocytes, the genetically modified RBECs secreted recombinant EPO into the cell culture medium both luminally and abluminally, and despite lower levels of EPO reaching the abluminal chamber, the amount of recombinant EPO was sufficient to evolve a biological effect on astrocytes cultured at the abluminal side in terms of upregulated gene expression of brain-derived neurotropic factor (BDNF). In conclusion, non-viral gene therapy to RBECs leads to protein secretion and signifies a method for therapeutic proteins to target cells inside the CNS otherwise omitted due to the BBB.  相似文献   

20.
Mouse models of DNA repair deficiency are useful tools for determining susceptibility to disease. Cancer predisposition and premature aging are commonly impacted by deficiencies in DNA repair, presumably as a function of reduced genomic fitness. In this review, a comprehensive analysis of all DNA repair mutant mouse models has been completed in order to assess the importance of haploinsufficiency for these genes. This analysis brings to light a clear role for haploinsufficiency in disease predisposition. Unfortunately, much of the data on heterozygous models are buried or underinvestigated. In light of a better understanding that the role of DNA repair haploinsufficiency may play in penetrance of other oncogenic or disease causing factors, it may be in the interest of human health and disease prevention to further investigate the phenotypes in many of these mouse models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号